
First, we should be sure that ansible is configured correctly, to run commands on a server or a
group of servers within the /etc/ansible/hosts file, run any of the below commands

While the above is an example of running bash commands on remote hosts ad-hoc via the
commandline, you can also run ansible modules from the commandline in a similar way -

Here, we grab file.txt from a remote host and copy it to our local home directory. Where -m is
selecting which module to use and -a is providing the options that you would specify within a
normal playbook via a command. Be sure to enclose any module options after -a with double
quotes or the command will fail. We use flat=yes to tell Ansible that we just want the file, and not
to rebuild the directory from the remote host. flat defaults to no , which would result in this
command building out the full directory
/home/localuser/www.remotedomain.com/home/remoteuser/path/file.txt on our local host. See the Ansible
documentation for each module for more information on their arguments. Here's a link to the
documentation for the fetch module

For the above command, we used the fetch module, which may not work for directories and may
consume a lot of memory if you are transferring a large file. For example, I experienced issues with
this when transferring large database backup files between hosts. If this is your use case, I would
recommend checking out the synchronize module documentation.

As an example of an ad-hoc synchronize command, I have used this in the past to retrieve fail2ban
configurations on a remote host. Note the mode=pull parameter that tells ansible that we want to
get the files from the remote host and place them at the local destination. By default, mode is set

Creating Playbooks
Ad-Hoc Commands

ansible -m ping hostname
ansible -m ping 134.23.4.5

ansible -a "sudo ls /" hostname
ansible -a "sudo ls /" 134.23.4.5

ansible -a "free -h" hostname
ansible -a "free -h" 134.23.4.5

ansible remotehostname -m fetch -a "src=/home/remoteuser/path/file.txt dest=/home/localuser/ flat=yes"

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/fetch_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/fetch_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/posix/synchronize_module.html

to push , which would attempt to copy files from our local host and send them to a directory on the
remote host.

Ansible can be configured to carry out tedious or otherwise common tasks on any number of hosts,
as we see below in the example playbook where Ansible is being used to backup an instance of
Bookstack.

Here, we use scp instead of Ansible's Fetch module to save memory on the small host that runs
the BookStack you are viewing. When fetching large files, memory errors can be encountered so
here we have worked around the module using an alternative method for transferring our files.

Here is another example, using ansible to synchronize the fail2ban configurations used between
multiple hosts. This allows us to configure one host, which is the local host that runs the playbook,
and once we have configured this host correctly we can just run the play and push our changes to
a group of hosts. Note that hostgroup should be specified in the local /etc/ansible/hosts file, or ansible
will not be able to run the play. Also notice that the src directories in this playbook are relative to
the path of the playbook itself. This allows me to store custom fail2ban configurations for different
groups of host alongside this playbook to avoid configuring fail2ban to monitor services that don't
exist on the system. If you try to monitor a service that does not exist, fail2ban will fail to reload.

ansible -m synchronize remotehostname -b -a "src=/etc/fail2ban/filter.d/ dest=/some/local/directory/fail2ban/
mode=pull"

Creating Playbooks

- hosts: bookstack
 become: yes
 tasks:
 - name: Backup Bookstack container files
 command: tar -cvzf bookstack-backup.tar.gz /home/admin/bookstack
 - name: Fetch backup files from remote host
 command: scp -P 2222 -i /home/username/.ssh/id_rsa /home/admin/bookstack-backup.tar.gz
admin@sub.domain.com:/home/admin/backups/bookstack/

- hosts: hostgroup
 become: yes
 tasks:
 - name: Copy custom fail2ban filters
 synchronize:
 mode: push

 src: fail2ban/filter.d/
 dest: /etc/fail2ban/filter.d/
 - name: Copy custom fail2ban jail.local
 synchronize:
 mode: push
 src: fail2ban/jail.local
 dest: /etc/fail2ban/
 - name: Reload fail2ban service
 ansible.builtin.service:
 name: fail2ban
 state: reloaded
 - name: Checking status of fail2ban service after restart
 command: systemctl status fail2ban
 register: result
 - name: Showing fail2ban status report
 debug:
 var: result

Be careful when synchronizing configurations in this way, hosts can be configured with
different services which could result in the fail2ban service failing to reload when it is unable
to find the related log files. For this reason, I use a seperate directory to configure fail2ban
for hosts with similar filters. In my case, my host that runs the ansible playbooks does not
have nginx installed, so copying over configurations for nginx jails will result in fail2ban
failing to reload.

Revision #7
Created 30 August 2019 07:51:03 by Shaun Reed
Updated 11 June 2021 12:28:09 by Shaun Reed

