
Ansible has a built in tool ansible-galaxy which allows us to quickly create a set of folders and files
that are needed in the creation of an Ansible role.

Simply run ansible-galaxy init rolename --offline and a folder will be created within your current
directory that contains the basic structure of an Ansible role. Within this directory, we can easily
pick and choose which components we will need for our role.

To begin, we will create a simple role for installing and configuring a simple nginx server. Navigate
within your role, which we will assume is simply called nginx-role

Within nginx-role/tasks/main.yml we include the following -

This task assumes that within the nginx-role/tasks/ directory we also have the files install.yml ,
configure.yml , and service.yml - See the below snippets for examples of how these files could look,
depending on your scenario.
Within the nginx-role/tasks/ directory, create the following files -

Create a nginx-role/tasks/install.yml task for installing nginx and any other required packages if
needed

Create a nginx-role/tasks/configure.yml task for templating various configuration files needed to
configure an nginx webserver

Creating Roles
Ansible Galaxy

Creating NGINX Roles

Define Tasks

tasks file for /etc/ansible/roles/nginx
- import_tasks: install.yml
- import_tasks: configure.yml
- import_tasks: service.yml

- name: Install nginx Package
apt: name=nginx state=latest

Create a task nginx-role/tasks/service.yml for starting the nginx service

Now we have defined all the tasks that Ansible needs to carryout in order to create a new nginx
host. All thats left to do is ensure that the tasks we created above have all the resources we said
would be available when the role is ran on a host.

In the tasks above, notice the notify: -restart nginx within configure.yml. Here, we have declared that
this task makes changes that require nginx to be restarted in order to be applied. So, we create the
handler task below to carry out the restart nginx task that we have notified of our changes.
To set this up, create the following nginx-role/handlers/main.yml configuration

Ansible will need to refer to the templates / files we declared in the above tasks -
Add them within the nginx-role/files/ directory

Create the following nginx-role/files/nginx.conf

- name: Copy nginx configuration file
 template: src=files/nginx.conf dest=/etc/nginx/nginx.conf
- name: Copy index.html file
 template: src=files/index.html dest=/var/www/html
 notify:
 - restart nginx

- name: Start and enable nginx service
 service: name=nginx state=restarted enabled=yes

Define Handlers

handlers file for /etc/ansible/roles/nginx
- name: restart nginx
 service: name=nginx state=restarted

Define Templates / Files

user www-data;
worker_processes auto;
pid /run/nginx.pid;

events { }

Then we can create a custom template at nginx-role/files/index.html for our landing page to verify
things are working.

http {
 include mime.types;

 # Basic Server Configuration
 server {
 listen 80;
 server_tokens off;
 server_name {{ domain_name }};

 location / {
 root {{ nginx_root_dir }};
 index {{ index_files }};
 }

 # Uncomment to pass for SSL
 #return 301 https://$host$request_uri;
 }
}

<!DOCTYPE html>
<html>
 <head>
 <title>Welcome to nginx!</title>
 <style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
 </style>
 </head>
 <body>
 <h1>Klips!</h1>
 <p>If you see this page, the nginx web server is successfully installed and working. Further configuration is
required.</p>
 <p>For online documentation and support please refer to

Last, we need to define the Ansible defaults we referenced in the above configurations {{
variable_name }} is a variable within Ansible, these can be used to create roles that can be used
dynamically or easily reconfigured and reapplied to different scenarios.
Create the following main.yml file in nginx-role/defaults

Ansible has a wide range of variables, or facts, that it collects on the hosts within its inventory. To
see a complete list of all the facts available for a host, run the following

This will print a ton of information, all of which is available for use within ansible templates by
calling a variable corresponding to the fact name. For example, if we wanted the fact
ansible_hostname and ansible_fqdn , we call them as {{ ansible_hostname }} or {{ ansible_fqdn }} . When
these variables are ran within a playbook, ansible will insert the values of these variables
depending on the host the task is running on.

That's it! Now all we need to do is create an inventory / hosts file and run a playbook using our new
role -

Create your ansible host file at /etc/ansible/hosts with the relevant information for your environment

 nginx.org.

 Commercial support is available at
 nginx.com.</p>
 <p>Thank you for using nginx.</p>
 </body>
</html>

Define Variables / Defaults

defaults file for /etc/ansible/roles/nginx
#
domain_name: "localhost"
nginx_root_dir: "/var/www/html/"
index_files: "index.html index.htm"

ansible hostname -m setup

Using Ansible Roles

This is the default ansible 'hosts' file.
#
It should live in /etc/ansible/hosts

Create the playbook /etc/ansible/nginx.yml to kick off our role using the role information and groups
entered above within the hosts file.

Now from within /etc/ansible/ , simply run ansible-playbook nginx.yml and our tasks configured above
will be carried out on the server defined in the hosts file above.

If you are testing using SSL, be sure to use the --dry-run argument until your configurations are
tested and working correctly.

[group]
www.domain.com
sub.domain.com:22
0.0.0.0
127.0.0.1:22

[othergroup]
sub.domain.com:22
127.0.0.1:22

[nginx-server]
sub.domain.com:22

- hosts: nginx-server
 become: yes
 roles:
 - nginx

sudo certbot certonly -d domain.com -d www.domain.com --dry-run --standalone --agree-tos -m some-
email@domain.com

Revision #12
Created 30 August 2019 07:13:22 by Shaun Reed
Updated 18 July 2020 10:36:48 by Shaun Reed

