
On this page, I'll describe how to configure Ansible to manage a remote host. In the context of this
page, a controller  is the ansible node that executes commands on remote hosts, while a client  is a
host which accepts commands from some controller.

The requirements for running / creating an ansible controller for a set of clients is as follows -

controller
has ansible
create ssh key as the ansible user

ssh-copy-id <worker>
should be able to ssh with no password - ssh <host / IP>  as ansible user

If the above does not work, create /home/USER/.ssh/config  and add
IdentityFile /path/to/Private.key , this will pass the key automatically when
connecting as USER.
Ensure the host you are connecting to has the connecting key within the
~/.ssh/authorized_keys  file.
restart sshd.service - sudo systemctl restart sshd.service

client
has ansible
has a known password, but can sudo without one.

<user> ALL=(ALL:ALL) NOPASSWD:ALL  within sudoers

This section will configure a new user to be our Ansible controller -

controller
has ansible
create ssh key as the ansible user
ssh-copy-id <worker>
should be able to ssh with no password - ssh <host / IP>  as ansible user

If the above does not work, create /home/USER/.ssh/config  and add IdentityFile 
/path/to/Private.key , this will pass the key automatically when connecting as
USER.
Ensure the host you are connecting to has the connecting key within the
~/.ssh/authorized_keys  file.

Managing Remote Hosts
Basic Requirements

Creating a Controller



restart sshd.service - sudo systemctl restart sshd.service

First, install Ansible -

On the controller we plan to use to manage remote hosts, create a user that will carry out all
Ansible commands.

Now that we created our user, we need to configure sudo, add user ALL=(ALL:ALL) ALL  to the
following file -

Add or edit our custom sudoers config to allow for sudo with no password

sudo apt-add-repository --yes --update ppa:ansible/ansible && sudo apt update -y
sudo apt install software-properties-common -y && sudo apt install ansible -y

Creating Controller Ansible User

sudo adduser username
[sudo] password for admin: 
ssh-rsa 
AAAeAB3NXyXeAAADAQABAAABXwxAQDXndHlHw2DxXMk1thdTsSJWoRxXXGl5jXXMGaRta1sdprzg/sXJAdding 
user `username' ...
Port 22
Adding new group `username' (1000) ...
Adding new user `username' (1000) with group `username' ...
Creating home directory `/home/username' ...
Copying files from `/etc/skel' ...
New password: 
Retype new password: 
passwd: password updated successfully
Changing the user information for username
Enter the new value, or press ENTER for the default
        Full Name []: 
        Room Number []: 
        Work Phone []: 
        Home Phone []: 
        Other []: 
Is the information correct? [Y/n] y

Controller Sudo Configuration

sudo visudo -f /etc/sudoers.d/mySudoers



Add the following line -

Secure the new user's User / Group ID's by defining a custom user and group ID

Change file permissions created when we added the user. Here we are just updating user files to
reflect new IDs. Errors are ok

Change all files to reference the correct group -

Change all files to reference the correct user -

kansible ALL=(ALL:ALL) NOPASSWD:ALL

# Add our new user to sudo group
admin@server:~$ sudo vigr 
You have modified /etc/group.
You may need to modify /etc/gshadow for consistency.
Please use the command 'vigr -s' to do so.
admin@server:~$ sudo vigr -s
You have modified /etc/gshadow.
You may need to modify /etc/group for consistency.
Please use the command 'vigr' to do so.

sudo usermod -u 61182 username
sudo groupmod -g 61181 username

sudo find / -group 1000 -exec chgrp -h username {} \;

find: ‘/proc/18580/task/18580/fd/6’: No such file or directory
find: ‘/proc/18580/task/18580/fdinfo/6’: No such file or directory
find: ‘/proc/18580/fd/5’: No such file or directory
find: ‘/proc/18580/fdinfo/5’: No such file or directory

sudo find / -user 1000 -exec chown -h username {} \;

find: ‘/proc/18611/task/18611/fd/6’: No such file or directory
find: ‘/proc/18611/task/18611/fdinfo/6’: No such file or directory
find: ‘/proc/18611/fd/5’: No such file or directory
find: ‘/proc/18611/fdinfo/5’: No such file or directory



That's it! Further customization for managing our remote servers will take place in defining hosts in
the Ansible inventory, creating playbooks, and defining / applying roles. For now, we should
configure a remote host to accept commands from this new Ansible controller

Below, we configure a user to authenticate with on the remote host we want to admin, known as
our Ansible client -

client
has ansible
has a known password, but can sudo without one.

<user> ALL=(ALL:ALL) NOPASSWD:ALL  within sudoers

To create an Ansible client, you'll need a user with a known password that can sudo without one.
Also, we will need to install our publickey from the controller we created above into this users
~/.ssh/authorized_keys  file so Ansible can ssh and sudo on this worker with only a private key.

First, install Ansible on the remote client -

To speed this up, I used a script I wrote to create a user with a custom userID, and configure sudo.
Get it here, or manually create the user as I did above for the Ansible controller.

If we run the script with no arguments, we see the help text -

So we can add a user with the following command -

Creating Ansible Clients

sudo apt-add-repository --yes --update ppa:ansible/ansible && sudo apt update -y
sudo apt install software-properties-common -y && sudo apt install ansible -y

Creating Ansible User for Remote Client

sudo ./adduser.sh ansible
Illegal number of parameters.
Usage: sudo ./adduser.sh <username> <groupid>

Available groupd IDs:
60001......61183 	Unused | 65520...............65533  Unused
65536.....524287 	Unused | 1879048191.....2147483647  Unused

sudo ./adduser.sh ansible 524280

https://gitlab.com/shaunrd0/klips/-/tree/master/scripts


Now, we need to configure the Sudoers file to allow our user to sudo without the password, even
though we did configure a password during user setup.

Assuming your username is ansible , add the following line to this file. -

Now the ansible user can sudo with no prompt for password! Now we just need to add our
controller's SSH key to the .ssh/authorized_keys file within the new ansible user's home directory.

Login as the user, and add the publickey that Ansible will pass for authentication.

Adding user `ansible' ...
Adding new group `ansible' (524280) ...
Adding new user `ansible' (524280) with group `ansible' ...
Creating home directory `/home/ansible' ...
Copying files from `/etc/skel' ...

Enter 1 if ansible should have sudo privileges. Any other value will continue and make no changes
1

Configuring sudo for ansible...

Enter 1 to set a password for ansible, any other value will exit with no password set
1

Changing password for ansible...
Enter new UNIX password: 
Retype new UNIX password: 
passwd: password updated successfully

Configure Sudo for Remote Client

sudo visudo -f /etc/sudoers.d/mySudoers

ansible ALL=(ALL:ALL) NOPASSWD:ALL

Be sure to either run the sudo visudo -f /etc/sudoers.d/mySudoers  or append the line above to the
end of the default sudoers file if you ran only sudo visudo  - This is a sequential configuration
so the order of the statements is important, and we want to ensure that nothing overrides
our choice to disable sudo passwords on this user



Verify sshd_config, and restart sshd.service

Once you have added your key to the authorized_keys file, determine if you have or plan to have
any custom PAM configurations on your host, and if so - add the following module to bypass any
future changes.

If you have or plan to have any custom PAM configurations on your host, you will need to change
PAM sshd authentication configuration as follows to allow our user to bypass other modules

In /etc/pam.d/sshd , we can add the following line to allow for a list of users past any other modules
configured on the server. Be sure to add this line at the top of our configuration file, so it is handled
before any other module.

Now we can add our user to the pam_userlist.so configured in the changes made above

In this /etc/authusers  file, we simply list users that can bypass further PAM configurations -

Be sure you add your hose IP and port to your /etc/ansible/hosts  file, syntax is seen below -

sudo -iu username
To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo_root" for details.
username@server:~$ mkdir .ssh
username@server:~$ sudo vim .ssh/authorized_keys

sudo vim /etc/ssh/sshd_config 
sudo systemctl restart sshd.service 

Adding Listfile Module (PAM)

sudo vim /etc/pam.d/sshd 

auth sufficient pam_listfile.so item=user sense=allow file=/etc/authusers

sudo vim /etc/authusers

user
otheruser
thirduser

Updating hosts



That's it! Now just sudo apt install ansible  and ssh to your Ansible controller to test out the
configuration.

From this point, the user is fully configured to bypass all security settings only if the ansible
controller is attempting to connect, allowing full sudo access. To test this, run the following
command and look for similar output -

[group]
www.domain.com
sub.domain.com:22  
0.0.0.0
127.0.0.1:22   

[othergroup]
sub.domain.com:22
127.0.0.1:22

[nginx-server]
sub.domain.com:22

[docker-host]
127.0.0.1:22

[dev]
sub.domain.com:22

Testing Ansible client

ansible dev -m ping
The authenticity of host '159.203.190.63 (159.203.190.63)' can't be established.
ECDSA key fingerprint is SHA256:jDxFV7KA00wNIdpG40ppvW2RobNXyPeItdi4jL3h78s.
Are you sure you want to continue connecting (yes/no)? yes
worker.domain.com | SUCCESS => {
    "ansible_facts": {
        "discovered_interpreter_python": "/usr/bin/python"
    }, 
    "changed": false, 
    "ping": "pong"
}



This test says that the host was not changed ( "changed": false ), and the server accepted our
connection ( "ping":"pong" )

Revision #23
Created 28 July 2019 08:17:22 by Shaun Reed
Updated 3 August 2020 00:18:17 by Shaun Reed


