Blockchain

Solidity

This page will cover setting up a local environment for working with Solidity. This is not required to
deploy an ERC20 token, but it is a good learning experience to set up these environments yourself
instead of using a provided service like Remix. That said, Remix is a really neat tool, and | would
recommend getting into some basic solidity there first and deploying a test contract to ropsten or
some other etereum testnet. For that process, | found a /ot of information available online, so |

won't cover it here, but here's my ERC20 token GitHub repository. The code there may be more up-

to-date then the code on this page, so there will probably be discrepancies from the screenshots
and snippets seen here as | work on the repository.

Once you deploy on Remix, if you still want to get a development environment and repository of
your own setup, this page might be useful to you.

ERC20 Token Standard

Solidity Documentation

OpenZeppelin Documentation This is a great resource

OpenZeppelin ERC20 Decoumentation specific to the IERC20 interface | inherit in my token

contract.

OpenZeppelin Contracts GitHub Useful for looking at how things are implemented

Remix ETH Web IDE You can use this Web IDE as an alternative to setting up a local
development environment.

MetaMask

You will need the MetaMask browser extension and wallet. Once you install it onto your web

browser, be sure to save your mnemonic phrase. This goes for all wallets, but we will
specifically need this phrase to deploy our contract.

Switch to the Ropsten testnet within metamask, and visit the link below and enter your wallet
address to give yourself free test ethereum. This is only for testing on the Ropsten network.

Ropsten ETH Faucet for testnet use only

https://gitlab.com/shaunrd0/karma
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://docs.soliditylang.org/en/v0.7.4/
https://docs.openzeppelin.com/learn/
https://docs.openzeppelin.com/contracts/4.x/api/token/erc20
https://github.com/OpenZeppelin/openzeppelin-contracts
http://remix.ethereum.org/
https://metamask.io/
https://faucet.ropsten.be/

@ Ethereum Mainnet Q

Networks

@ Ethereum Mainnet

You will need this test ETH to pay the transaction fees for deploying your contract when
creating your ERC20 token. Don't skip this step, visit the link to the ropsten faucet above.

Custom Coins

You will only need to do this once you have your contract deployed

To get your custom token balances to show in metamask, you need to add a custom coin. Be sure
you are on ropsten, or your testnet of choice, and see the images below.

In your MetaMask wallet, click Add Token , and go to the Custom Token tab. Enter your contract
address you recieved when deploying.

https://knoats.com/uploads/images/gallery/2021-04/image-1619715726351.png

- @ Ropsten Test Network

Add Tokens

Search Custom Token

Token Contract Address

0x6F502849750960CdB3c225beDAb6al5065f 85855

Token Symbaol

KRMA

Decimals of Precision

18

Cancel MNext

Click Add Tokens on the confimation screen, and they will appear in your wallet!

https://knoats.com/uploads/images/gallery/2021-04/image-1619716007687.png

- @ Ropsten Test Network

Add Tokens

Would you like to add these tokens?

Token Balance

. KRMA 100000... KRMA

Back Add Tokens

https://knoats.com/uploads/images/gallery/2021-04/image-1619716047531.png

. @ Ropsten Test Network s

Account 1

OxPF&8...E&3F

4
0.97/09ETH

Buy

Send

Assets Activity
4 05709 ETH N
. 1000000000 KRMA N

(Add Token)

Compiling Solidity With Truffle

Truffle Documentation

We need to install the Truffle compiler -

npm install --save-dev truffle

The next steps will overwrite your contracts/ and test/ directories. If you have files there you
want to keep, move or copy them somewhere else. After running the following initialization
command, move them back, but keep any other additional files that Truffle has generated.

Run the following command to initialize a new Truffle project

https://knoats.com/uploads/images/gallery/2021-04/image-1619716077258.png
https://www.trufflesuite.com/docs/truffle/overview

npx truffle init

[kapper@kubuntu-vbox karmal$npx truffle init

Starting init...

>~ Copying project files to /home/kapper/Code/karma

Init successful, sweet!

Check the truffle-config.js generated by npx truffle init , and modify your compiler version as needed.
For me, all active settings in this config are seen below. This will work for compiling locally, but not
on any remote public network. The next section will cover deploying to a remote network.

// truffle-config.js
module.exports = {
// Set default mocha options here, use special reporters etc.
mocha: {
I
// Configure your compilers
compilers: {
solc: {
version: "0.8.0", [/ <------- Modify your version if needed!
}
I
db: {
enabled: false
}
b

Project Setup

Solidity is the language | used to create an ERC20 Token. This section will cover compilation of a
contract on a local machine. If it compiles locally, it will deploy successfully. The sections after this
will cover deploying Solidity projects to a remote networks with Truffle, and then deploying
upgradeable ERC20 contracts. After that deploy is done, your token will be available on the
Ropsten test net, and can be sent between wallets or added to Pancakeswap or a similar service.

Install Solidity Compiler

How to setup an NPM project

How to setup a Solidity project

https://knoats.com/uploads/images/gallery/2021-04/image-1619713282132.png
https://docs.soliditylang.org/en/v0.3.5/installing-solidity.html#npm-node-js
https://docs.openzeppelin.com/learn/setting-up-a-node-project#creating-a-project
https://docs.openzeppelin.com/learn/developing-smart-contracts#setting-up-a-solidity-project

First, we need to make a project directory and install everything we need. If you don't have git or
npm , you'll need to install them first. We will also install the Truffle compiler -

mkdir /some/project/dir
cd /some/project/dir
git init[J// Git is useful. Use it as needed, or don't. | won't cover any git commands here.

npm init -y[T}/ Modify the generated package.json file, if needed

if you want to use OpenZeppelin, you will need to run the following command to install it, making it
available to import in your contracts

npm install --save-dev @openzeppelin/contracts
Now, within a new contracts/contract-ERC20.sol file we can import the ETH ERC20 interface provided

by OpenZeppelin, define a new contract Karma, and provide our own definitions for the member
functions declared in the IERC20 interface -

// Copyright [2021] - [2021], [Shaun Reed] and [Karma] contributors
// SPDX-License-ldentifier: MIT

pragma solidity >= 0.8.0;

1
// Import ERC Token Standard #20 Interface

/I ETH EIP repo: https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
1
import "@openzeppelin/contracts/token/ERC20/IERC20.s0l";

//
// SourceCoin Contract
//

contract Karma is IERC20

{

string public name;

string public symbol;
uint8 public decimals; // 18 decimals is the strongly suggested default, avoid changing it

uint256 public _totalSupply;

// Balances for each account; A hashmap using wallet address as key and uint as value

mapping(address => uint) balances;

https://docs.openzeppelin.com/learn/

// Owner of account approves the transfer of an amount to another account

mapping(address => mapping(address => uint)) allowed;

¥

* Constrctor function

ES

* |nitializes contract with initial supply tokens to the creator of the contract

*/

constructor()

{

name = "Karma"; // Name of the token
symbol = "KRMA"; // Abbreviation of the token

decimals = 18; /I Number of decimals that can be used to split token

// FORMAT: <SUPPLY><DECIMALS>

// Where SUPPLY is the number of coins in base 10 decimal notation

// And DECIMALS is a trailing number of 0's; Count must match “decimals™ value set above
// 1000 000 000 000000000000000000 == 1 billion total supply;

/I + trailing O's represent the 18 decimal locations that can be used to send fractions

_totalSupply = 1000000000000000000000000000;

// Set the remaining balance of the contract owner to the total supply
balances[msg.sender] = _totalSupply; // msg.sender is the calling address for this constructor
// Transfer the total supply to the contract owner on initialization

emit Transfer(address(0), msg.sender, _totalSupply); // address(0) is used to represent a new TX

/l Get the total circulating supply of the token

function totalSupply() public override view returns (uint)

{

// By subtracting from tokens held at address(0), we provide an address to 'burn' the supply

return _totalSupply - balances[address(0)]; // Subtract from tokens held at address(0)

// Get the token balance for account “tokenOwner®

function balanceOf(address tokenOwner) public override view returns (uint balance)

return balances[tokenOwner]; // Return the balance of the owner's address

/Il @param tokenOwner The address of the account owning tokens

/Il @param spender The address of the account able to transfer the tokens

//] returns Amount of remaining tokens allowed to spent

function allowance(address tokenOwner, address spender) public override view returns (uint remaining)

{

return allowed[tokenOwner][spender];

/I Allow "“spender” to withdraw from your account, multiple times, up to the “tokens®
/1 If this function is called again it overwrites the current allowance with _value.
function approve(address spender, uint tokens) public override returns (bool success)
{

allowed[msg.sender][spender] = tokens;

emit Approval(msg.sender, spender, tokens);

return true;

/I Transfer the balance from owner's account to another account
function transfer(address to, uint tokens) public override returns (bool success)
{

balances[msg.sender] = balances[msg.sender] - tokens;

balances[to] = balances[to] + tokens;

emit Transfer(msg.sender, to, tokens);

return true;

/] Send “tokens® amount of tokens from address “from™ to address “to"
/I The transferFrom method is used for a withdraw workflow, allowing contracts to send
// tokens on your behalf, for example to "deposit" to a contract address and/or to charge
// fees in sub-currencies; the command should fail unless the _from account has
// deliberately authorized the sender of the message via some mechanism; we propose
/] these standardized APIs for approval:
function transferFrom(address from, address to, uint tokens) public override returns (bool success)
{
balances[from] = balances[from] - tokens;

allowed[from][msg.sender] = allowed[from][msg.sender] - tokens;

balances[to] = balances[to] - tokens;
emit Transfer(from, to, tokens);

return true;

The next section will cover compiling this contract with Truffle.

Compiling Solidity With Truffle

Be sure to move any contracts you have into the contracts/ directory, and any tests you have into
the test/ directory. For my project, | have a simple network test and a single contract. For an

example ERC20, check shaunrdO/karma The screenshot below of my compilation output should

provide some insight into how my project is structured.

Now, when we run the following command truffle will compile all contracts in the contracts/
directory.

npx truffle compile

[kappergkubuntu-vbox karmal$npx truffle compile

ing solc version list from solc-bin. Attempt #1
Downloading compiler. Attempt #1.
> Compiling ./contrac ations.sol
> Compiling ‘
> Compiling @openzeppelin/contracts/token/ERC28/IERC20.501
> Artifact itten to /home/kapper/Code/karma/build/contracts
= Compiled successfully using:
- solc: 0.8.0+commit.c7dfd78e.Emscripten.clang

Now that our contract compiles, we need to configure truffle to connect to a testnet so we can
deploy to the public test network. The next section will cover doing this.

Deploy Truffle to Public Networks

Deploying Truffle to Remote Networks

Install hdwallet-provider for Truffle. We will use this to configure our wallet address when deploying
the contract.

npm install --save-dev @truffle’/hdwallet-provider

https://gitlab.com/shaunrd0/karma
https://gitlab.com/shaunrd0/karma
https://knoats.com/uploads/images/gallery/2021-04/image-1619713481770.png
https://docs.openzeppelin.com/learn/connecting-to-public-test-networks?pref=truffle#connecting-project-to-network

Grab your alchemy API key first, because you will need it! Once registered, the Alchemy
dashboard will let you create a new project. Name it whatever you want, put it on whatever
network you want just make sure this matches the network you put in your config below.
Once you create the app, click View Key in the screenshot below. This can be found on the
dashboard for the application itself. Copy the HTTPS key provided.

Karma ERC20 Token B Staging [Ropsten VIEW KEY EDIT APP

COMPUTE UNITS / SEC MEDIAN RESPONSE (5MIN) SUCCESS % (1H) RATE LIMITED % (24H) @
(5M)

0 99.9% 0% o

CONC. REQUESTS (1H) SUCCESS % (24H) TOTAL REQUESTS (24H) INVALID REQUESTS (i]
(24H)

0 99.9% (RSYAS 2

Now you're ready to look at your config. Add your mnemonic attached to your MetaMask wallet as
the phrase , and add your Alchemy API key as the providerOrUrl -

Do not commit or post the raw contents of this file, unless you use a secrets.json or some
other method to abstract your personal details. You never want to share your mnemonic
phrase, or your alchemy API key with anyone.

/I truffle-config.js

const HDWalletProvider = require('@truffle/hdwallet-provider');

module.exports = {
networks: {
ropsten: {
provider: () => new HDWalletProvider({
mnemonic: {
phrase: 'word word word word word word word word word word word word word word'

h
providerOrUrl: "https://eth-ropsten.alchemyapi.io/v2/xxxxxxx_YOUR_ALCHEMY_API_KEY_XXXXXxxXx",
chainld: 3[J/ <--- Don't forget this! For me, excluding this line caused errors. cainld 3 is for ropsten

},
network_id: 3, // Ropsten's id

https://dashboard.alchemyapi.io/
https://knoats.com/uploads/images/gallery/2021-04/image-1619714162267.png

gas: 5500000, // Ropsten has a lower block limit than mainnet
confirmations: 2, // # of confs to wait between deployments. (default: 0)
timeoutBlocks: 200, // # of blocks before a deployment times out (minimum/default: 50)
skipDryRun: true // Skip dry run before migrations? (default: false for public nets)
}
}
// Set default mocha options here, use special reporters etc.
mocha: {

1

// Configure your compilers
compilers: {
solc: {
version: "0.8.0", [/ <------- Modify your version if needed!
}
h
db: {
enabled: false
}
b

Now we are ready to test that we can connect to the ropsten network, and verify our wallet
connection at the same time.

npx truffle console --network ropsten

This should open a console prompt, type await web3.eth.getBalance(accounts[0]) , followed by accounts .
If you get a response, things are configured correctly! You should notice your wallet address is
listed after entering the second accounts command.

[kappergkubuntu-vbox karmal$npx truffle console --network ropsten
truffle(ropsten)> await web3.eth.getBalancel(accounts[0])

truffle(ropsten)> accounts

[

One final step before we can deploy our contract to ropsten. Create the file migrations/2_deploy.js ,
and add the contents below. Be sure to pay attention to comments and change the values as

https://knoats.com/uploads/images/gallery/2021-04/image-1619714935946.png

needed.

// migrations/2_deploy.js
// Set variable name Karma to your whatever you named your token

const Karma = artifacts.require("Karma"); // <-- Set string in call to articfacts.require to your token name

module.exports = function (deployer) {

deployer.deploy(Karma); // <----- Use const variable declared above in call to deployer.deploy
b

Now, we are finally ready to deploy our contract. run this final command to deploy to ropsten
testnet.

npx truffle migrate --network ropsten

This may take a while, but when it completes you should see the output below

[kappergkubuntu-vbox karmal$npx truffle migrate --network ropsten

Compiling your contracts...

> Everything is up to date, there is nothing to compile.

Starting migrations...

> Network name: 'ropsten’
> Network id: 3
> Block gas limit: 8000000 (@x7al200)

transaction hash: Bx4af53f020a8d0e1547d49ef58f5eb2f2aad4a8d51782a55T41445a64ech3faaal
Blocks: 2 Seconds: 16

contract address: Ox6F502849750960CdB3c225beDAbGADSAR5TE5855
block number: 16138480

block timestamp: 1619712008

account: Bx9F688c4D72356E230E09dbafASBfECTO81C1BERST
EE [=F 0.990170624

gas used: 935546 (0xedb67a)

gas price: 20 gwel

value sent: @ ETH

total cost: G.01871092 ETH

¥V W vV VY YV Y Y YN

Pausing for 2 confirmations...

= confirmation number: 1 (block: 18138481)
= confirmation number: 3 (block: 18138483)

> Saving migration to chain.
> Saving artifacts

0.01871092 ETH

> Total deployments: 1
> Final cost: 0.018716892 ETH

We have deployed Karma to the ETH ropsten testnet! You can take the contract address and view it

on EtherScan. Here's the link for the contract we deployed in this section. All of my source code
for this token's contract can also be found there, under the contract tab. It is useful, once

you have a contract deployed or some transactions to look at, to explore etherscan a bit to see how
things are organized. Notice on my contract page, you can see that 1 Billion Karmas were minted
and sent to my wallet address when the contract was deployed, since | am the contract owner, and
our contrract constructor looks like this -

Vs

* Constrctor function

https://knoats.com/uploads/images/gallery/2021-04/image-1619715213248.png
https://ropsten.etherscan.io/address/0x6f502849750960cdb3c225bedab6a05065f85855

*

* |nitializes contract with initial supply tokens to the creator of the contract

*/
constructor()
{
name = "Karma"; // Name of the token
symbol = "KRMA"; // Abbreviation of the token
decimals = 18; /I Number of decimals that can be used to split token

// FORMAT: <SUPPLY><DECIMALS>

// Where SUPPLY is the number of coins in base 10 decimal notation

// And DECIMALS is a trailing number of 0's; Count must match “decimals™ value set above
// 1000 000 000 000000000000000000 == 1 billion total supply;

/I + trailing 0's represent the 18 decimal locations that can be used to send fractions

_totalSupply = 1000000000000000000000000000;

// Set the remaining balance of the contract owner to the total supply
balances[msg.sender] = _totalSupply; // msg.sender is the calling address for this constructor
// Transfer the total supply to the contract owner on initialization

emit Transfer(address(0), msg.sender, _totalSupply); // address(0) is used to represent a new TX

This constructor only happens wheen the contract is deployed. Currently, with the contract we
have deployed, the only way to update the contract implementation is to effectively deploy a new
contract and tell all clients to direct their calls to the new address on ropsten. This could be a
simple or complicated process, depending on the use of your token.

If this just didn't seem like it would scale well for you, the next section will look into using a proxy
pattern to deploy a ProxyAdmin which would own a TransparentUpgradeableProxy - this
TransparentUpgradeableProxy points to a contract address on the ethereum network that implements
the functionality of Karma , or whatever you have named your token. Laying out the project this
way, things make sense and you provide yourself with the tools you need to upgrade contracts
without any clients needing to redirect any of their calls to a new address.

A complete example of a non-upgradeable token can be found at shaunrdO/karma/basic-

karma

Upgradeable ERC20

https://gitlab.com/shaunrd0/karma/-/tree/basic-karma
https://gitlab.com/shaunrd0/karma/-/tree/basic-karma

For deploying upgradeable contracts, we can use the same truffle.config.js as we did in
the sections above.

Upgradeable Contracts For Truffle

First, we need to install @openzeppelin/contracts-upgradeable to your project by running the following
command -

npm i --save-dev @openzeppelin/contracts-upgradeable

If this is your first time deploying using @openzeppelin/truffle-upgrades , you may notice an additional
deploy of a ProxyAdmin that happens when you make your very first deploy. This ProxyAdmin is
owned by your wallet address, and you can use it to manage the proxied contracts you deploy in
the future. OpenZeppelin will automatically deploy one ProxyAdmin on each network you deploy on,
and this deploy will only happen the first time you deploy on the network.

The only code we need to provide for this to happen is seen below in the first few lines of the
migrations/3_deploy proxy.js file.

const { deployProxy } = require('@openzeppelin/truffle-upgrades');

When we include this deployProxy and using it to deploy a proxy contract, OpenZeppelin handles
making sure we have a ProxyAdmin deployed on the network first. We don't need to otherwise

manually define the ProxyAdmin contract or deploy process. Here is my ProxyAdmin - you'll notice

you have the following functions available in the write contract section on etherscan

@ Contract 0x5aCDF749f25d91d4BF254053dCc5d81Aa7d564A5

Contract Overview More Info # Moe~

Balance: 0 Ether My Mame Tag: Mot Available
Creator: 0x9f588c4d72356e230e... at txn Oxeb870bd815db7b0eaa...
Transactions Internal Txns Contract @ Events
Code | | Read Contract
[Expand all] [Reset]
1. changeProxyAdmin >
2. renounceOwnership >
3. transferOwnership >
4. upgrade 3
5. upgradeAndCall >

Powered by Etherscan.io. Browse source code

If we click Connect to Web3 , metamask will prompt us to choose an account to connect to. In order
for this to work, your metamask account must be on the same network as the contract

https://forum.openzeppelin.com/t/openzeppelin-upgrades-step-by-step-tutorial-for-truffle/3579
https://ropsten.etherscan.io/address/0x5acdf749f25d91d4bf254053dcc5d81aa7d564a5#writeContract
https://knoats.com/uploads/images/gallery/2021-05/image-1620242353014.png

you are viewing.
If you try to connect to my ProxyAdmin , you'll notice you lack permissions to run any of the
functions in Write Contract . It would be the same for me if | tried to connect to your ProxyAdmin . This

protects our contracts and allows only the owner of the ProxyAdmin to manage their own contracts.

For now, it is enough to know this contract exists, when it is created, and what it is for. Later on, we
will use this contract to upgrade our proxy implementation.

A complete example of an upgradeable token can be found at shaunrdO/karma

Contracts

Let's say we have the following contract

// Copyright [2021] - [2021], [Shaun Reed] and [Karma] contributors
// SPDX-License-ldentifier: MIT

pragma solidity >= 0.8.0;

1
// Import ERC Token Standard #20 Interface

/I ETH EIP repo: https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
1
import "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol";

import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";

//
// Karma Contract

1

contract Karma is Initializable, ERC20Upgradeable
{
function initialize(string memory name, string memory symbol, uint256 initialSupply) public virtual initializer {
__ERC20_init(name, symbol);
_mint(_msgSender(), initialSupply);

And we want to add an additional function, isToken , just to test that our upgrades are working. This
function simply returns true, since Karma is a token. Notice the contract above does not define or
declare this function.

https://gitlab.com/shaunrd0/karma/

To upgrade Karma , we add the function below, and rename the contract to KarmaVv2

// Copyright [2021] - [2021], [Shaun Reed] and [Karma] contributors
// SPDX-License-ldentifier: MIT

pragma solidity >= 0.8.0;

1
// Import ERC Token Standard #20 Interface

/I ETH EIP repo: https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
1
import "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol";

import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";

//
// Karma Contract

1

contract KarmaV?2 is Initializable, ERC20Upgradeable
{
function initialize(string memory name, string memory symbol, uint256 initialSupply) public virtual initializer {
__ERC20_init(name, symbol);
_mint(_msgSender(), initialSupply);

function isToken() public view returns (bool)

{

return true;

Now we have defined all the contracts we need for an upgradeable ERC20 token, and we have
written the contract for our upgrade. In the next section, we will define the needed Migrations to
deploy the original Karma to ETH ropsten test network. Then, we will upgrade Karma to Karmav2,
and finally, to KarmaVv3 .

Migrations

We will need to create the following migrations, the ./migrations/ folder inside your project directory.
Each file has a comment with the required name. It is important to prefix these migrations with 1_,
2 , 3_, etc - as Truffle uses this order to track migration status and pick up where it left off should
a subsequent migration be interrupted or fail.

// migrations/1_initial_migration.js

const Migrations = artifacts.require("Migrations");

module.exports = function (deployer) {
deployer.deploy(Migrations);
IS

// migrations/2_deploy_karma.js

const Karma = artifacts.require('Karma');

module.exports = async function (deployer) {

await deployer.deploy(Karma);

h

// migrations/3_deploy_proxy.js

const Karma = artifacts.require('Karma');
const { deployProxy } = require('@openzeppelin/truffle-upgrades');
module.exports = async function (deployer) {
await deployProxy(
Karma,
['Karma', 'KRMA', '1000000000000000000000000000'],
{ deployer, initializer: 'initialize' }

}

Deploying and Verifying

Now, having defined the above contracts and migrations, we are ready to deploy to a public test
network. Run npx truffle migrate --network ropsten to deploy to ETH's ropsten testnet, or replace
ropsten with the testnet of your choice. The output from my deploy can be seen below. Note that

there is no deploy seen in the output for my ProxyAdmin since it already exists. An account can only
use one ProxyAdmin on each network, but can own several proxies.

npx truffle migrate --network ropsten

Compiling your contracts...

> Everything is up to date, there is nothing to compile.

Starting migrations...

> Network name: 'ropsten'
> Network id: 3
> Block gas limit: 8000000 (0x7a1200)

1 initial_migration.js

> transaction hash: 0x17286139¢c9b789dd5a92bb36a5d58a510285d170f28dec48813c3c1ed8218658
> Blocks: 0 Seconds: 28

> contract address: Ox8EfAf71d6126b2A0e76A319c¢92303B3E6Fdc521c

> block number: 10184001

> block timestamp: 1620312442

> account: 0x9F688c4D72356E230E9db8fA58f6cf981C16E63f
> balance: 1.62242806275

> gas used: 245600 (0x3bf60)

> gas price: 20 gwei

> value sent: 0 ETH

> total cost: 0.004912 ETH

Pausing for 2 confirmations...

> confirmation number: 1 (block: 10184002)
> confirmation number: 2 (block: 10184003)

> Saving migration to chain.

> Saving artifacts

> Total cost: 0.004912 ETH

2_deploy_karma.js

Deploying '‘Karma'

> transaction hash: 0x8757dcfb9ada79802219fbb4ff4851d56044681cef0el41c35a3fc81c61340fd
> Blocks: 1 Seconds: 8

> contract address: 0xb2281089EBflbaB9d701f8697bleCBaC3319e00F

> block number: 10184008

> block timestamp: 1620312531

> account: 0x9F688c4D72356E230E9db8fA58f6cf981C16E63f
> balance: 1.58983600275

> gas used: 1583690 (0x182a4a)

> gas price: 20 gwei

> value sent: 0 ETH

> total cost: 0.0316738 ETH

Pausing for 2 confirmations...

> confirmation number: 1 (block: 10184009)
> confirmation number: 2 (block: 10184010)

> Saving migration to chain.

> Saving artifacts

> Total cost: 0.0316738 ETH

3_deploy_proxy.js

> transaction hash: 0xca0c617b7f9668ad431c8199fdbedec7e68d08ee42961c89bea3f0670d8b6607
> Blocks: 0 Seconds: 8

> contract address: 0x957684dC3De2b93154b2561c7bC96875306E39A0

> block number: 10184013

> block timestamp: 1620312610

> account: 0x9F688c4D72356E230E9db8fA58f6cf981C16E63f
> balance: 1.55758594275

> gas used: 1583690 (0x182a4a)

> gas price: 20 gwei

> value sent: 0 ETH

> total cost: 0.0316738 ETH

Pausing for 2 confirmations...

> confirmation number: 1 (block: 10184014)
> confirmation number: 2 (block: 10184015)

Deploying 'ProxyAdmin'

> transaction hash: 0xc2733e6480aeb1746e00f8951ac770b9c03d325fa5baf0570ddd13e9flfefb2c
> Blocks: 2 Seconds: 24

> contract address: 0xC51D55CCDe8996993D05EBFd9Ad481A4A782B82B

> block number: 10184017

> block timestamp: 1620312651

> account: 0x9F688c4D72356E230E9db8fA58f6cf981C16E63f
> balance: 1.54790554275

> gas used: 484020 (0x762b4)

> gas price: 20 gwei

> value sent: 0 ETH

> total cost: 0.0096804 ETH

Pausing for 2 confirmations...

> confirmation number: 1 (block: 10184018)
> confirmation number: 2 (block: 10184019)

Deploying 'TransparentUpgradeableProxy'

> transaction hash: 0x763e6ef2c2828a320c46830f224140c2c30305ee6453eb7b0bd46d17538fedel
> Blocks: 1 Seconds: 5

> contract address: 0x438B6a24d3581c379F51Ae389bf37236ae94BEAS

> block number: 10184022

> block timestamp: 1620312693

> account: 0x9F688c4D72356E230E9db8fA58f6cf981C16E63f
> balance: 1.53359502275

> gas used: 715526 (0xaeb06)

> gas price: 20 gwei

> value sent: 0 ETH

> total cost: 0.01431052 ETH

Pausing for 2 confirmations...

> confirmation number: 1 (block: 10184023)
> confirmation number: 2 (block: 10184024)

> Saving migration to chain.

> Saving artifacts

> Total cost: 0.05566472 ETH

Summary

> Total deployments: 5

> Final cost: 0.09225052 ETH

EtherScan Truffle Verification Plugin

Plugin setup instructions provided by rkalis/truffle-plugin-verify. Thanks to the developer for this

useful tool! Really simplifies the process and avoids manually flattening several contract files.

npm install --save-dev truffle-plugin-verify

Then, within your truffle-config.js , make sure you add the following plugins section -

const HDWalletProvider = require(‘@truffle/hdwallet-provider');
// WARNING: Do not commit or share the values referencced in this line - use some secret method to store them
const { alchemyApiUrl, mnemonic, etherscanApiKey } = require('./secrets.json'); // Using a secrets.json file

// const mnemonic = fs.readFileSync(".secret").toString().trim(); // Or use a .secret file

module.exports = {
plugins: [
'truffle-plugin-verify'
I
api_keys: {
etherscan: etherscanApiKey

1

Store a secrets.json in your project directory to resolve your secrets -

https://github.com/rkalis/truffle-plugin-verify

{
"alchemyApiUrl": "https://eth-ropsten.alchemyapi.io/v2/xxxxXxxxXXXYOUR_ALCHEMY_API_KEYXXXXXXXXXXX",

"mnemonic": "word word word word word word word word word word word word",

"etherscanApiKey": "SOMEREALLYLONGETHERSCANAPIKEY"
}

Now, we can simply run npx truffle run verify <ContractName> --network <NetworkName> to verify our
contracts!

If these steps are not followed carfully, truffle-plugin-verify will fail verification due to previous
contracts not being verified first. The order of verification is important here, or at least it was for
my contract. If | tried to verify in any other order, or without specifying the contract addresses,
Karma would fail verification.

To verify the above contracts with truffle-plugin-verify , we just need to verify them in the order they
were deployed. Run the following commands. Notice that when we verify Karma , we specify the
contract addresses in the order they were deployed. So we verify
Karma@0xb2281089EBf1baB9d701f8697b1leCBaC3319e00F first, then
Karma@0x957684dC3De2b93154b2561c7bC96875306E39A0 that replaced it in the subsequent deploy.
When we jus try to verify Karma, we can see that it fails initially, and we can only verify by
specifying contract addresses in-order -

[kapper@kubuntu-vbox karmal$npx truffle run verify Migrations --network ropsten

Verifying Migrations

Pass - Verified:
https://ropsten.etherscan.io/address/Ox8EfAf71d6126b2A0e76A319c92303B3E6Fdc521c#contracts
Successfully verified 1 contract(s).

[kapper@kubuntu-vbox karma]$npx truffle run verify Karma --network ropsten

Verifying Karma

Fail - Unable to verify

Failed to verify 1 contract(s): Karma

[kapper@kubuntu-vbox karma]$npx truffle run verify
Karma@0xb2281089EBf1baB9d701f8697b1leCBaC3319e00F --network ropsten

Verifying Karma@0xb2281089EBf1baB9d701f8697b1eCBaC3319e00F

Pass - Verified:
https://ropsten.etherscan.io/address/0xb2281089EBf1baB9d701f8697bleCBaC3319e00F#contracts
Successfully verified 1 contract(s).

[kapper@kubuntu-vbox karma]$npx truffle run verify
Karma@0x957684dC3De2b93154b2561c7bC96875306E39A0 --network ropsten

Verifying Karma@0x957684dC3De2b93154b2561c7bC96875306E39A0

Pass - Verified:

https://ropsten.etherscan.io/address/0x957684dC3De2b93154b2561c7bC96875306E39A0#contracts

Successfully verified 1 contract(s).

Notioe that we did not have to verify our ProxyAdmin oOr TransparentUpgradeableProxy - these contracts
are automatically verified by OpenZeppelin's truffle-upgrades plugin.

For quick access, here are links to all the contracts deployed above

Migrations

Karma

Karma (Replacement)

(My) ProxyAdmin

TransparentUpgradeableProxy

And, the resulting token on etherscan is found here - Karma Token

In the next section, we will see how upgrades work for Karma . Note that the output shown in the
next section was on a different deploy, so the contracts deployed in this section is entirely
seperate, and they each have their own TransparentUpgradeableProxy and Token on etherscan.

Deploying Token Upgrades

First, we need to define a migration to upgrade to Karmav2 . -

The code for the Karmav2 contract is found in the Upgradeable ERC20/Contracts section
above.

/] migrations/4_upgrade_karma.js

const { upgradeProxy } = require('@openzeppelin/truffle-upgrades');

const Karma = artifacts.require('Karma');

const KarmaV2 = artifacts.require('KarmaVv2');

module.exports = async function (deployer) {
const existing = await Karma.deployed();
await upgradeProxy(existing.address, KarmaV2, { deployer });

+

https://ropsten.etherscan.io/address/0x8EfAf71d6126b2A0e76A319c92303B3E6Fdc521c
https://ropsten.etherscan.io/address/0xb2281089EBf1baB9d701f8697b1eCBaC3319e00F
https://ropsten.etherscan.io/address/0x957684dC3De2b93154b2561c7bC96875306E39A0
https://ropsten.etherscan.io/address/0xC51D55CCDe8996993D05EBFd9Ad481A4A782B82B
https://ropsten.etherscan.io/address/0x438B6a24d3581c379F51Ae389bf37236ae94BEA8
https://ropsten.etherscan.io/token/0x438B6a24d3581c379F51Ae389bf37236ae94BEA8

And, to later deploy a KarmaVv3 , we need to add another deploy to our ./migrations/ directory. The
file below is an example of what | used to deploy this upgrade.

// migrations/5_upgrade_karma.js

const { upgradeProxy } = require('@openzeppelin/truffle-upgrades');

const KarmaV2 = artifacts.require('KarmaV2');

const KarmaV3 = artifacts.require('KarmaVv3');

module.exports = async function (deployer) {
const existing = await KarmaV2.deployed();
await upgradeProxy(existing.address, KarmaV3, { deployer });

I

And, as a further example, here is an even newer version for Karma that adds a new function
getAddress that simply returns the address of the Karmav3 contract. This function can then be used
to return the address of the current contract that is implementing calls to the TransparentProxy , in
this and future versions of Karma .

// contracts/karma-3-ERC20.sol
// Copyright [2021] - [2021], [Shaun Reed] and [Karma] contributors
// SPDX-License-ldentifier: MIT

pragma solidity >= 0.8.0;

1
// Import ERC Token Standard #20 Interface

/I ETH EIP repo: https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
1

import "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol";

import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";

//
// Karma Contract

1

contract KarmaV3 is Initializable, ERC20Upgradeable
{
function initialize(string memory name, string memory symbol, uint256 initialSupply) public virtual initializer {
__ERC20_init(name, symbol);
_mint(_msgSender(), initialSupply);

function isToken() public pure returns (bool)

{

return true;

function getAddress() public view returns (address)

{

return address(this);

Now we are ready to deploy the upgrades to etherscan -

[kapper@kubuntu-vbox karma-new]$npx truffle migrate --network ropsten

Compiling your contracts...

> Compiling ./contracts/Migrations.sol

> Compiling ./contracts/karma-1-ERC20.sol

> Compiling ./contracts/karma-2-ERC20.sol

> Compiling ./contracts/karma-3-ERC20.sol

> Compiling @openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol

> Compiling @openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol

> Compiling @openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol

> Compiling @openzeppelin/contracts-upgradeable/token/ERC20/extensions/IERC20MetadataUpgradeable.sol
> Compiling @openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol

> Compilation warnings encountered:

Warning: Function state mutability can be restricted to pure
--> [home/kapper/Code/karma-new/contracts/karma-2-ERC20.s0l:24:5:
I
24| function isToken() public returns (bool)

| ~ (Relevant source part starts here and spans across multiple lines).

> Artifacts written to /home/kapper/Code/karma-new/build/contracts

> Compiled successfully using:

- solc: 0.8.0+commit.c7dfd78e.Emscripten.clang

Starting migrations...

> Network name: 'ropsten’
> Network id: 3
> Block gas limit: 8000000 (0x7a1200)

1_initial_migration.js

> transaction hash: 0x13d88d460d187ef446f48ae52984a8387b06e20ecc3887dbf52a2a958fa7ea29
> Blocks: 1 Seconds: 12

> contract address: 0xeB3c4405174931CDDd59E5edfAB03fc46100Ec6D

> block number: 10179266

> block timestamp: 1620248502

> account: 0x9F688c4D72356E230E9db8fA58f6cf981C16E63f
> balance: 1.74300232575

> gas used: 245600 (0x3bf60)

> gas price: 20 gwei

> value sent: 0 ETH

> total cost: 0.004912 ETH

Pausing for 2 confirmations...

> confirmation number: 1 (block: 10179267)
> confirmation number: 2 (block: 10179268)

> Saving migration to chain.

> Saving artifacts

> Total cost: 0.004912 ETH

2_deploy_karma.js

> transaction hash: 0xa21e6335e217cf4056541f842957e8370009c19889f8c1455dc0de4b11407ea3
> Blocks: 0 Seconds: 24

> contract address: 0xB2425Ea8087233A8cD4140E1480F60EB57C133aE

> block number: 10179270

> block timestamp: 1620248640

> account: 0x9F688c4D72356E230E9db8fA58f6cf981C16E63f
> balance: 1.71041050575

> gas used: 1583678 (0x182a3e)

> gas price: 20 gwei

> value sent: 0 ETH

> total cost: 0.03167356 ETH

Pausing for 2 confirmations...

> confirmation number: 1 (block: 10179271)
> confirmation number: 2 (block: 10179272)

> Saving migration to chain.

> Saving artifacts

> Total cost: 0.03167356 ETH

3_deploy_proxy.js

Deploying 'TransparentUpgradeableProxy"

> transaction hash: 0x774ddb93ed3b219202195821e43939f031320d441cf78e8bbf497724b06f2b05
> Blocks: 1 Seconds: 52

> contract address: 0OxdCDA9d33Eb6eEf5C748743Bb1e2B7FBFBc500904

> block number: 10179275

> block timestamp: 1620248756

> account: 0x9F688c4D72356E230E9db8fA58f6cf981C16E6G3f

> balance: 1.69552372575

> gas used: 715526 (Oxaeb06)

> gas price: 20 gwei
> value sent: 0 ETH

> total cost: 0.01431052 ETH

Pausing for 2 confirmations...

> confirmation number: 1 (block: 10179277)
> confirmation number: 2 (block: 10179278)

> Saving migration to chain.

> Saving artifacts

> Total cost: 0.01431052 ETH

4 upgrade_karma.js

> Saving migration to chain.

> Total cost: 0 ETH

5 upgrade_karma.js

> transaction hash: 0x3c446b4acle647d3145b5e187e03d181f5del01fe568271eb6ded27c90felcale
> Blocks: 0 Seconds: 12

> contract address: 0x9e3Be3194de7A033f82e7aC121b1036Dd817f4c7

> block number: 10179297

> block timestamp: 1620248992

> account: 0x9F688c4D72356E230E9db8fA58f6cf981C16E63f
> balance: 1.62875240575

> gas used: 1621063 (0x18bc47)

> gas price: 20 gwei

> value sent: 0 ETH

> total cost: 0.03242126 ETH

Pausing for 2 confirmations...

> confirmation number: 1 (block: 10179298)
> confirmation number: 2 (block: 10179299)

> Saving migration to chain.

> Saving artifacts

> Total cost: 0.03242126 ETH

Summary

> Total deployments: 1

> Final cost: 0.08331734 ETH

In the output above, you'll notice the 4 upgrade karma.js deploy did not provide a contract
address or create a transaction. This is because | already had this version deployed on the
ropsten testnet when writing this page. As an example, | added the third version to the
deploy to show how to upgrade subsequent contracts.

For quick access, here's links to each contract deployed above on EtherScan:

(My) ProxyAdmin

TransparentUpgradeableProxy

Karma (V1)
KarmaV?2
KarmaV3

And, the resulting token on etherscan is found here - Karma Token

Manual EtherScan Verification

If you are unable to get truffle-plugin-verify to work for your contracts, you can alternatively flatten
them manually and submit them to etherscan yourself for verification. This section will cover how
to do this.

https://ropsten.etherscan.io/address/0x5acdf749f25d91d4bf254053dcc5d81aa7d564a5#writeContract
https://ropsten.etherscan.io/address/0xdCDA9d33Eb6eEf5C748743Bb1e2B7FBFBc500904#readProxyContract
https://ropsten.etherscan.io/address/0xB2425Ea8087233A8cD4140E1480F60EB57C133aE#code
https://ropsten.etherscan.io/address/0xb03889cbe1e0b0586e9f3894a22fd2977b883e41#code
https://ropsten.etherscan.io/address/0x9e3Be3194de7A033f82e7aC121b1036Dd817f4c7#code
https://ropsten.etherscan.io/token/0xdCDA9d33Eb6eEf5C748743Bb1e2B7FBFBc500904

Verification of contracts on etherscan is not so straight-forward the first time around, or at least it
wasn't for me. Head over to etherscan, make sure you are viewing the correct network, and enter
the deployed contract address for Karma (Or, in your case, enter the contract address that
replaced Karma)

Here is the contract page for Karma that we deployed on ropsten in the output above. Notice the
verification status of Karma is Verified. Compare this page to the same page on your contract. The
Karma contract should allow you to call functions within the read contract and write contract pages,
while an unverified contract will not provide access to these functions. So, we need to verify our
contracts on etherscan. When we try to view an unverified contract, we will be presented with a
link to verify that looks similar to the page below.

Transactions Contract Events

© Are you the contract creator? Verify and Publish your contract source code today!

Decompile ByteCode & Switch to Opcodes View Similar Contracts.

@x608060405234801561001057600080Td5h50600436106100C 5700003560201 C806370a082311161005c57806389859cbb11610066578063a9059cbbl461023c578@63b11949021461026c578063ddo2ed3e14610288578063eefas
97b146182b8576188cF565DB86378a88231146181be57886395d89b41146181ee5780863a457c2d71461828c5761@8CF565 dde83146188d45 ea7b3146186+F2578863181608ddd1461812257886323b872dd14610148
578863313ce56714618178578863395893511461818e575b 88FdSbe188dch182d b6@48516188e99198611598565b6@485188918398+35b51818c58848836838181986181879198611321565b618368565b684851618119919
@61157d! bEe485188910 T35b61812861038 b6@4@85161013791906116da565b60405180910398735b61015a600480360381019061015591906112d2565b610390565b604051610167919061157d565b60405188910398T35b
618178618491565b6648516101859198611675565b604085180910398135b6121a860048036038101906101a39190611321565b61849a565b6840516101b5919861157d565b68485180918398T35b6101d860045036038101966101d39
19861126d565b618546565b6848516181591986116da565b68485188918398F35b6181F6618558F565b6848516182839198611598565b68485188918396F35b6108226668488368358181966162219198611321565b618621565b6684851
618233919061157d565b68405180910396135b610256600480360351019061225191906113215650616715565b6040851610263919061157d565b60405180910398735b6102866004803603810190610281919061135d565b618733565
b@85b6162a2600480360381019061029d9190611296565b61082a565b6@40516102aT91906116da565b60485180918398735b6102c@6108b1565b6048516102cd919861157d565b664851809103908135b606000368054610225906118
a3565b38681FA1682058918482662001664851985818168485288929198818152682881828854618311986118a3565b881561835e575868111861833357618188885835484828352916828819161835e565b8281919868080852562860862

@985b315481529060010190602001808311610341578290036017165201915b50505058500050905650680061037c6103756188bas65b84846108C b 198589291 b 3554 b 1 84610a8d
565b600060346000867 3T T T T FffFff fFf T FrFF P PR PP 167 3 F P T P P P F A A A A A AP T PP AP A A AT P T T T16815260200190815260200160002060006103e86108bas65b7 3F I F T ffff FFFFFF I I FFfffff v
A 167 3 F A A A A A A A A A A F16815260200198815260208168062854985882811815618468576848517F08 37! 15268

Click verify and Publish , and you will see a page that asks for several options you configured when
setting up your project and writing your contracts. Select the options that match your token. My
options for Karma are seen in the screenshot below. Please disregard the contract address in this
image, as it does not reflect any address we have linked to on this page. The compiler type,
version, and license are all still relevant to Karma .

https://ropsten.etherscan.io/address/0xB2425Ea8087233A8cD4140E1480F60EB57C133aE#code
https://knoats.com/uploads/images/gallery/2021-05/image-1620250292010.png

Please enter the Contract Address you would like to verify

OxATEDADB98819C255A53C2cFBBBE119D454637636

Please select Compiler Type

qr

Solidity (Single file)

Please select Compiler Version

L1

vO.8.0+commit.c7did7ge

Please select Open Source License Type (O

L1

3) MIT License (MIT)

| agree to the terms of service

Now, we will be presented with a screen that asks up to input the source code for the contract.
Including other contracts with an import is not allowed here, and to verify simply the
easiest and most effective way is to 'flatten’ your .sol contract manually (and carefully).

At each import statement, recursively, simply copy-paste the code from the import in-place of the
import statement itself. Remove any SPDX-License-ldentifier beyond the initial SPDX-License-ldentifier
you declare (or should declare) at the very top of your own contract. Be sure not to leave any
imports in the flattened contract, or verification will fail. If your contracts use arguments in the
constructor, you will have to research ABI format for inputting your constructor arguments. Karma
does not use any arguments in the constructor, so there is no need for me to do this in this
example.

Here is a pastebin example of my input that verified KarmaV1l

Here is a pastebin example of my input that verified KarmaV?2

Here is a pastebin example of my input that verified KarmaV3

Once the verification of these implementation contracts is complete, we are ready for the final step
- verifying the TransparentUpgradeableProxy . To do this, navigate to the relative contract address on

etherscan for your deploy. For my example, the contract for the TransparentUpgradeableProxy can

https://knoats.com/uploads/images/gallery/2021-05/image-1620246107312.png
https://pastebin.com/mL42KQGc
https://pastebin.com/aTeDd0VW
https://pastebin.com/M5wXnZic
https://ropsten.etherscan.io/address/0xdCDA9d33Eb6eEf5C748743Bb1e2B7FBFBc500904#code

be found at this link

This part is very easy to miss on etherscan, and wraps up all the work we've done so far

In the image below, click More Options and then click s this a proxy? in the context menu that pops
up.

Transactions Internal Txns Contract° Events

oLl | Read Contract | | Write Contract | | Read as Proxy @ | | Write as Proxy @0 ® | search Source Code v oA

@ Contract Source Code Verified (Similzr Maich)

Note: This contract matches the deployed ByteCode of the Source Code for Contract 0x30204EeM26276¢615... A
Contract Name: TransparentUpgradeableProxy Optimization Enabled: Yes with 200 runs
Compiler Version v0.8.2+commit.661d1103 Other Settings: default evmVersion

[Contract Source Code (Solidity Standard Json-Input format) \r e ﬂ
Is this a proxy?

File 1 of 7 : TransparentUpgradeableProxy.sol]n
.

5 amport "../ERU1Y6//ERULIY6/Proxy.sol”; B Isthis 2 proxy? &0
6

7 = B Similar

8 * @dev This contract implements a proxy that is upgraodeable by an admin.

= o Sol2um D
16~ * To avoid https://medium.com/nomic-Labs-blog/malicious-backdoors-in-ethereun-proxies-62629adf3357[proxy selector

11 = clashing], which can potentially be used in on ottack, this contract uses the B SubmitAudit

12 * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy patternj. This pattern implies two

13 = things that ge hand in hand: ® Compare ©D

14 *

15 = 1. If any account other than the odmin colls the proxy, the coll will be forworded to the implementation, even if
16 * that call motches one of the admin functions exposed by the proxy itself.

17 * 2, If tn_e gdmin calls the proxy, it can access the admin functions, but its calls will never be forworded to the

This will lead you to the following verification page, which automatically fills out the contract
address of the TransparentUpgradeableProxy and allows you to submit it for verification as a proxy
contract. Click verify , and if all has been done correctly, the TransparentUpgradeableProxy will verify
with the message below!

Please enter the Proxy Contract Address you would like to verify

Ox18A249620246Ce591 16a54F03588916F 302386

Successfully saved. Feel free to return to the address
0x18A249620246Ce59116a54F03589916Fff3D23E6 to view updates.

That's it! We have deployed an upgradeable ERC20 token on the Ethereum ropsten testnet. After
verifying your TransparentUpgradeableProxy , you should notice the addition of the Read as Proxy and
Write as Proxy options when viewing the TransparentUpgradeableProxy on etherscan, as seen in the
image below.

https://ropsten.etherscan.io/address/0xdCDA9d33Eb6eEf5C748743Bb1e2B7FBFBc500904#code
https://knoats.com/uploads/images/gallery/2021-05/image-1620251154938.png
https://knoats.com/uploads/images/gallery/2021-05/image-1620242914450.png

Transactions Internal Txns C:C}I'ITFECTo Events

Code | | Read Contract | Write Contract [IECCRERNO VBN | \rite as Proxy @0

= ABI for the implementation contract at 0x9e3be2194de7a03282e7ac121b1036dd817f4c7, using the EIP-1967 Transparent Proxy pattern.
Previously recorded to be on 0xb03889cbe1e0b0586e913894a22d2977h883e41.

[Read Contract Information [Expand all] [Reset]
1. allowance +
2 balanceOf +
3. decimals +
4. getAddress 3
5 isToken +
6. name +
7. symbol >
8. totalSupply 3

We should notice that the implementation contract referred to in bold is the address or the most
recent Karma, which is KarmaVv3 . We can be sure of this by both the contract address and the
addition of the isToken and getAddress functions seen under Read as Proxy . Pretty cool!

We now have a single contract that can refer to the most recent implementation we have defined
on the ropsten testnet. Hopefully, some of this information has helped you to deploy your own
token.

https://knoats.com/uploads/images/gallery/2021-05/image-1620251357504.png

