
Installation

BookStack Configuration
Bookstack Using Docker Compose

Development

Backup Bookstack Using Docker
Updating BookStack Using Docker
Exploring the Database

Knoats

Welcome to Knoats!

BookStack

https://www.bookstackapp.com/docs/admin/installation/

Installation

Installation

Bookstack stores custom settings file .env within its active directory, /var/www/bookstack/ this is
where you will go to modify most settings within your bookstack instance. Check the GitHub link
below for a complete list of environment variables on the active release branch.

https://github.com/BookStackApp/BookStack/blob/release/.env.example.complete

To allow BookStacks to send mail using Google's free mail server, ensure that your .env settings
within your bookstack directory (/var/www/bookstack/.env) contains the below.

Now head over to Configure Postfix to setup a Mail Transfer Agent (MTA) on your host. If you have a
firewall, be sure you open the port you enter for MAIL_PORT .

BookStack Configuration
Environment Settings

APP_URL environment variable must lead with http:// or https:// and end with / such as
http://website.com/ or https://website.com/ . Any form of the following will cause URL
redirect issues: www.website.com , website.com or subdomain.website.com

Mail Setup

The below url has to be set if using social auth options

or if you are not using BookStack at the root path of your domain.

APP_URL=https://knoats.com/

#Mailsettings

MAIL_DRIVER=smtp

MAIL_HOST=smtp.gmail.com

MAIL_PORT=587

MAIL_USERNAME=email@gmail.com

MAIL_PASSWORD=password

MAIL_ENCRYPTION=tls

MAIL_FROM=email@gmail.com

https://github.com/BookStackApp/BookStack/blob/release/.env.example.complete
https://www.digitalocean.com/community/tutorials/how-to-use-google-s-smtp-server
https://www.knoats.com/books/linux-admin/page/configure-postfix

Once that's done, test sending mail with the command below, where emailuser@example.com is the
destination email address -

You must have a valid HTTPS certificate configured, if you are using DigitalOcean. See the link
below.
DO - DNS Records
Knoats - NGINX SSL Configuration

As a final step, we can use BookStack's builtin mail test within the Settings->Maintenance panel -

Image not found or type unknown

Once we click the button to send a test email, we should see something like the below

Image not found or type unknown

echo "This email confirms that Postfix is working" | mail -s "Testing Posfix"

emailuser@example.com

https://www.digitalocean.com/docs/networking/dns/how-to/manage-records/
https://www.knoats.com/link/30#bkmrk-configure-ssl
https://www.knoats.com/uploads/images/gallery/2020-06/image-1591314992713.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1591315123790.png

Installation

A Bookstack can be easily ran with docker using the default .env settings and tested through
visiting localhost in a web browser. Follow the Docker Installation Instructions and create a
docker-compose.yml configuration that matches the format on the Linuxserver.io Repository (
DockerHub Image) page. If you've never used Docker before, it's a good idea to check out Play
With Docker - a community project sponsored by Docker.

Docker Compose utilizes a docker-compose.yml file to organize and configure the services running
on a host using Docker. The docker-compose.yml should look something like the following, grabbed
directly from the Linuxserver.io GitHub Repository for the Docker image we are using below -
linuxserver/bookstack.

Bookstack Using Docker
Compose
Creating a Bookstack on localhost

Creating a docker-compose.yml

version: "2"

services:

 bookstack:

 image: linuxserver/bookstack

 container_name: bookstack

 environment:

 - PUID=1000

 - PGID=1000

 - DB_HOST=bookstack_db

 - DB_USER=bookstack

 - DB_PASS=<yourdbpass>

 - DB_DATABASE=bookstackapp

 volumes:

 - ./bookstack/:/config

 ports:

 - 6875:80

https://github.com/linuxserver/docker-bookstack
https://hub.docker.com/r/linuxserver/bookstack/tags
https://labs.play-with-docker.com/
https://labs.play-with-docker.com/
https://github.com/linuxserver/docker-bookstack#docker-compose
https://hub.docker.com/r/linuxserver/bookstack/tags

Be sure to edit this file to change the passwords above before spinning up your container, and pay
attention to the path specified within the docker-compose volumes. This should be the path to the
data directory which will hold the mounted volumes shared between the Docker Container and its
host. It's usually a good idea to send each container to its own directory, which will be created if it
doesn't already exist.

For example, If you specify a volume as ./bookstack/:/config , then the bookstack directory will be
created within the directory of the docker-compose.yml that was ran to spin up the service. Docker
will then mount the bookstack directory to the contaier's /config directory

If you are running a strict firewall or set of iptables, be sure to adjust them accordingly to the ports
within the docker-compose.yml. If you are just spinning up a container locally, you shouldn't need
to worry about firewall rules since all the traffic will be internal.

The final configuration step is to change <yourdbpass> in the docker-compose.yml above to your
preferred password.

Now, all we need to do is store this docker-compose.yml file within a directory we wish to admin
the container from, and run docker-compose up -d to start our services that we have defined. the -
d flag simply tells docker-compose that we wish the detatch the processes from our current
terminal session, which prevents us from inheriting the active logs from the services we started. If
you want to see these logs as an active feed after you spin up your services, simply run docker-
compose logs -f to do so.

 restart: unless-stopped

 depends_on:

 - bookstack_db

 bookstack_db:

 image: linuxserver/mariadb

 container_name: bookstack_db

 environment:

 - PUID=1000

 - PGID=1000

 - MYSQL_ROOT_PASSWORD=<yourdbpass>

 - TZ=Europe/London

 - MYSQL_DATABASE=bookstackapp

 - MYSQL_USER=bookstack

 - MYSQL_PASSWORD=<yourdbpass>

 volumes:

 - ./database/:/config

 restart: unless-stopped

Starting Our Containers

That's it! As long as you have no custom domain configuration and only plan to view this Bookstack
instance locally, there is no other configuration to be done on the back end of your test-wiki. You
should be able to open your web browser and visit localhost:6875 to see your Bookstack
application.

Run docker ps to see a list of containers, and the ports they are running on. This helps to debug
network issues when attempting to view our application. If localhost:6875 does not work, check
that your output is appropriate for the use of that port.

Working from a headless server, but still trying to run containers locally? Run elinks
http//localhost:6875 to check if you see the page below

Image not found or type unknown

Alternatively, if you are working in a full DE or otherwise using a registered domain name, you can
visit the page within your preferred web browser to see the page below

Image not found or type unknown

Generally, you should be able to find all relative logs and error messages by running either docker
logs bookstack or docker logs bookstack_db . If you want docker to provide a live feed of logs, you'll
need to add the -f flag to do so, as in docker logs bookstack -f .

In the case of this Bookstack instance, we are using https to encrypt the web traffic, which runs
over port 443/tcp. So when you visit knoats.com in your web browser, I have an NGINX
configuration in place to ensure that all traffic is routed through the port 443 , which is decrypted
and passed internally to the localhost port 0.0.0.0:6875 where our containerized port 80 then
serves our web content using NGINX.

You will need to include the port within the URL to view your BookStack unless you are using
NGINX to proxy traffic to the appropraite port

Testing BookStack

Troubleshooting

CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES

xxxxxxxxxxxx linuxserver/bookstack "/init" 25 hours ago Up 25

hours 443/tcp, 0.0.0.0:6875->80/tcp bookstack

https://www.knoats.com/uploads/images/gallery/2020-06/image-1593553767379.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1593553963212.png

Some of this information has been changed for security reasons - such as ports and the CONTAINER
ID's seen above. If you want to configure SSL for your bookstack, see Knoats - NGINX SSL
Configuration

xxxxxxxxxxxx linuxserver/mariadb "/init" 26 hours ago Up 25

hours 3306/tcp bookstack_db

https://www.knoats.com/link/30#bkmrk-configure-ssl
https://www.knoats.com/link/30#bkmrk-configure-ssl

For my development notes

Development

Development

Don't drive as root, create a BookStack administrator account by following the adduser instructions
.

If you are running Bookstack in a docker container, run the following command to backup the
database from outside the docker container. Navigate to the root of the running docker container,
and run the following command. Don't forget to replace the <INSERTS> with actual file names,
users, or other information regarding your Bookstack instance.
sudo docker exec <DOCKER-CONTAINER-NAME> /usr/bin/mysqldump -u <USER> -p <DATABASE> >

<DATABASE>.backup.sql so an example of this command would be the following -

This will output the file bookstack.backup.sql into your working directory, move this file to a safe
place so you can restore the database should something go wrong in the future. Alternatively, you
could manually enter the container with sudo docker exec -it CONTAINER bash and then just run
mysqldump -u USER -p DATABASE > DATABASE.backup.sql && exit followed by sudo docker cp
CONTAINER:/container/path/DATABASE.backup.sql local/path to copy the SQL backup onto our
container's host.

This is all that needs to be done to backup the base content of BookStack, but there are some
important configurations and upload directories you'll want to zip up, too. To zip these directories,
enter your docker container and run the following commands

If you used the method above, the database can be easily restored using the following commands

Backup Bookstack Using
Docker

sudo docker exec bookstack /usr/bin/mysqldump -u bookstackadmin -p bookstack_db >

bookstack.backup.sql

sudo docker exec -it BOOKSTACK_CONTAINER bash

tar -czvf bookstack-files-backup.tar.gz /var/www/html/.env /var/www/html/public/uploads

/var/www/html/storage/uploads

exit

sudo docker cp BOOKSTACK_CONTAINER:/var/www/html/bookstack/bookstack-files-backup.tar.gz

/home/USER/ftp/

http://knoats.com/link/14#bkmrk-page-title

If you are restoring to a new version of BookStack you will have to run php artisan migrate after
restore to perform any required updates to the database. For safe keeping, toss this file
somewhere so you can quickly peek at it whenever you need it. But once you run these commands
a few times, you won't forget them.

Move our backup files into the containers that need them

sudo docker cp /home/USER/ftp/backup/bookstack.backup.sql BOOKSTACK_MYSQL_CONTAINER:/

sudo docker cp /home/USER/ftp/backup/bookstack-files-backup.tar.gz

BOOKSTACK_CONTAINER:/var/www/html/bookstack/

Enter MySQL container and restore the DB

sudo docker exec -it BOOKSTACK_MYQL_CONTAINER bash

mysql -u {mysql_user} -p {database_name} < {backup_file_name}

exit

Enter Bookstack container and restore local data

sudo docker exec -it BOOKSTACK_CONTAINER bash

tar -xvzf bookstack-files-backup.tar.gz

exit

#!/bin/bash

##Reference for backing up the BookStack database within docker container

################

Backup Bookstack Database

sudo docker exec DOCKER_MYSQL_CONTAINER /usr/bin/mysqldump -u USER --password=PASSWORD

DATABASE > DATABASE.backup.sql

Backup Bookstack Files

sudo docker exec -it DOCKER_CONTAINER bash

tar -czvf bookstack-files-backup.tar.gz .env public/uploads storage/uploads

exit

sudo docker cp CONTAINER:/var/www/html/bookstack/bookstack-files-backup.tar.gz /home/USER/ftp/

Or manually copy them...

 # sudo docker cp BOOKSTACK_CONTAINER:/var/www/html/bookstack/.env /home/USER/ftp/

 # sudo docker cp BOOKSTACK_CONTAINER:/var/www/html/bookstack/storage/uploads /home/USER/ftp/

 # sudo docker cp BOOKSTACK_CONTAINER:/var/www/html/bookstack/public/uploads /home/USER/ftp/

Restore

Move our backup files into the containers that need them

 # sudo docker cp /home/USER/ftp/backup/bookstack.backup.sql BOOKSTACK_MYSQL_CONTAINER:/

 # sudo docker cp /home/USER/ftp/backup/bookstack-files-backup.tar.gz

BOOKSTACK_CONTAINER:/var/www/html/bookstack/

Enter MySQL container and restore the DB

 # sudo docker exec -it BOOKSTACK_MYQL_CONTAINER bash

 # mysql -u USER -p DATABASE < DATABASE.backup.sql

 # exit

Enter Bookstack container and restore local data

 # sudo docker exec -it BOOKSTACK_CONTAINER bash

 # tar -xvzf bookstack-files-backup.tar.gz

 # exit

Development

You can use volumes within docker-compose to store your configurations for your services,
including other files and databases, on the host and pass them to the container to be used - this
enables you to easily remove containers and purge images without worrying about backing up your
data. As personal preference, I still run manual backups using the instructions shared on the
Backup BookStack Page, but you shouldn't need to worry as the data is never touched when you
are updating these images - the only concern would be if the image changes the way it uses the
information, in which case you may need to change some paths for the volumes within your
docker-compose.yml .

Run the below commands to update all services defined within your docker-compose.yml .

The above commands are more general and less specific to BookStack, and the same approach
could be used to update containers for any service you are using, just be sure to persist and / or
backup your data.

For this example, we run the commands to update BookStack -

Updating BookStack Using
Docker

docker-compose down

docker container prune

docker image prune -a

#Verify you have no images left with your service, if you do, remove them.

docker images -a

docker-compose ps -a

#Once you verify the above, you are ready to spin up your services and pull the latest images.

docker-compose up -d

user@bookstack:~/linuxserver-bookstack$ docker-compose down

Stopping bookstack ... done

Stopping bookstack_db ... done

Removing bookstack ... done

https://www.knoats.com/books/docker/page/volumes
https://www.knoats.com/books/bookstack/page/backup-bookstacks

Removing bookstack_db ... done

Removing network linuxserver-bookstack_default

user@bookstack:~/linuxserver-bookstack$ docker image prune

WARNING! This will remove all dangling images.

Are you sure you want to continue? [y/N] y

Deleted Images:

untagged:

linuxserver/bookstack@sha256:d94bdeaea3eb9d2935e38s1dcca85450cdbd144706ccb6x78a2e75f0bde07

deleted: sha256:c32f40ccc7s51e508d2x2b241a00d529a35123a18d661b1edde15aac9bfee

deleted: sha256:5f2a803x93bb9fa8ab547c31d5a4f3e8520402d6425s85b53df80ebe515a9

deleted: sha256:84c9530d404015fc887c22xeecb1aebd99d2303aade5d48a2sfda044427f8

deleted: sha256:ff6dcf5097f8cfa05ff357d8axaf334c3a06259d97a6f2082cs8e7f280608

Total reclaimed space: 150.9MB

user@bookstack:~/linuxserver-bookstack$ docker-compose images

Container Repository Tag Image Id Size

--

user@bookstack:~/linuxserver-bookstack$ docker-compose up -d

Creating network "linuxserver-bookstack_default" with the default driver

Creating bookstack_db ... done

Creating bookstack ... done

user@bookstack:~/linuxserver-bookstack$

Development

I'm running my Bookstack in a docker container, so for me if I want to explore my database the first
step is to get a bash terminal within the container. Lets say you've named your bookstack
database container db_bookstack - the command to enter a bash terminal within the container
would be docker exec -it db_bookstack bash

Once you have a terminal, login to the database by running mysql -u username -p and enter the
password to login when prompted. If you setup your bookstack with a docker container this should
have been configured within your docker-compose.yml that you use to spin up your services.

Once your logged in, you'll see a mysql prompt like the below -

The prompt shows (none) because we haven't selected a database. Run show databases; to show
the databases available to you and select one with use database; , see below for an example.

NOTE: The names of these databases do not reflect any actual databases

Now that we've selected the database we want to explore, let's see what it contains by running
show tables; -

Exploring the Database

MariaDB [(none)]>

MariaDB [(none)]> show databases;

+--------------------+

| Database |

+--------------------+

| bookstack |

| information_schema |

+--------------------+

2 rows in set (0.000 sec)

MariaDB [(none)]> use bookstack;

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Database changed

MariaDB [bookstack]>

See something you want to explore further? Describe it by ruinng describe table; , like below
where I describe the books table.

MariaDB [bookstack]> show tables;

+---------------------+

| Tables_in_bookstack |

+---------------------+

| activities |

| api_tokens |

| attachments |

| books |

| bookshelves |

| bookshelves_books |

| cache |

| chapters |

| comments |

| email_confirmations |

| entity_permissions |

| images |

| joint_permissions |

| migrations |

| page_revisions |

| pages |

| password_resets |

| permission_role |

| role_permissions |

| role_user |

| roles |

| search_terms |

| sessions |

| settings |

| social_accounts |

| tags |

| user_invites |

| users |

| views |

+---------------------+

29 rows in set (0.000 sec)

Neat! We have all the tools we need to step through any database that we have access to explore,
and now we just need to be able to list the actual content within the tables of the database. Below,
we run select and from commands that refer to specific tables and elements within our database.
After the commands are input, the tables and their values we selected are displayed. See below for
an example.

MariaDB [bookstack]> describe books;

+-------------+------------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-------------+------------------+------+-----+---------+----------------+

| id | int(10) unsigned | NO | PRI | NULL | auto_increment |

| name | varchar(191) | NO | | NULL | |

| slug | varchar(191) | NO | MUL | NULL | |

| description | text | NO | | NULL | |

| created_at | timestamp | YES | | NULL | |

| updated_at | timestamp | YES | | NULL | |

| created_by | int(11) | NO | MUL | NULL | |

| updated_by | int(11) | NO | MUL | NULL | |

| restricted | tinyint(1) | NO | MUL | 0 | |

| image_id | int(11) | YES | | NULL | |

+-------------+------------------+------+-----+---------+----------------+

10 rows in set (0.001 sec)

MariaDB [bookstack]> select id, name, created_at, updated_at, created_by from books;

+----+--------------------------+---------------------+---------------------+------------+

| id | name | created_at | updated_at | created_by |

+----+--------------------------+---------------------+---------------------+------------+

| 1 | Pi | 2019-04-06 00:00:35 | 2019-05-17 15:41:22 | 1 |

| 4 | Docker | 2019-04-06 00:02:12 | 2020-02-24 03:26:34 | 1 |

| 7 | BookStack | 2019-04-06 04:41:38 | 2019-05-17 20:42:20 | 4 |

| 9 | Self-Hosted Applications | 2019-04-06 12:12:51 | 2019-07-06 14:17:31 | 4 |

| 13 | Networking | 2019-04-19 06:48:57 | 2019-07-06 12:54:22 | 4 |

| 16 | Security | 2019-05-04 15:02:19 | 2019-05-12 13:53:57 | 4 |

| 20 | Linux Admin | 2019-07-06 12:57:22 | 2019-07-06 13:20:10 | 4 |

| 21 | Git | 2019-07-19 03:11:03 | 2019-07-26 21:54:29 | 4 |

| 23 | Vim | 2019-07-21 05:15:16 | 2019-08-30 08:22:47 | 4 |

| 24 | Ansible | 2019-07-28 08:17:04 | 2019-08-30 07:58:16 | 4 |

| 28 | C++ | 2019-10-13 20:24:23 | 2020-03-01 14:31:16 | 4 |

+----+--------------------------+---------------------+---------------------+------------+

Knoats

Knoats

This is a personal project in server-administration, documentation, and development. None of the
information here is considered official documentation of any kind. Sign up is open, email
verification is required, and upon logging in you will only be able to view some books and pages
that are hidden to public visitors. If you have any questions or concerns, reach out to me via email
- mailedknoats@gmail.com.

Feel free to sign up and look around, there isn't much here but some personal notes on various
topics like NGINX, Bash, Docker, etc.

View Knoats

As the sole administrator of Knoats, on a back-end server level, I have no access (or desire) to view
private content such as passwords or information from linked accounts.

Welcome to Knoats!

mailto:mailedknoats@gmail.com
https://www.knoats.com/books

