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If you use vim, you can bind CTRL-B  to build a cmake project

Within bash, you can easily build a single C++ source file into an executable with g++ -g -Wall 
source.cpp , this will output an a.out  file which is the default name for the resulting executable. If
you want to name this file, pass the -o  argument as follows g++ -g -Wall source.cpp -o executable

Now, we can run the executable with ./executable  or ./a.out , so long as you are within the directory
where it exists and the build completed normally.

Note that you can also build with clang++ , and a C++ standard can be specified with clang++ -
std=c++11 cource.cpp

A simple makefile can be seen below, which can compile a project with a single make  command.
Create your own with details specific to your project, and name it Makefile

Building Projects

nnoremap <C-b> :!cmake -S . -B ./build/ && cmake --build ./build

Building from Bash

Make

# Makefile
#------------------------------------------------------------------------------
# Set Local Variables
CXX = g++
CXXFLAGS = -g -Wall

#------------------------------------------------------------------------------
# Build executable
exe:	driver.cpp lib.o
	${CXX} ${CXXFLAGS} driver.cpp lib.o -o exe

#------------------------------------------------------------------------------
# Compile sources
lib.o:	lib.cpp lib.h
	${CXX} ${CXXFLAGS} -c lib.cpp -o lib.o



Note that CXX  and CXXFLAGS  are just local variables that define our compiler, g++, and the flags
we'd like to set for it to use. Later, within this makefile, we can use them with the ${VARNAME}
syntax. This lets us define things like filepaths, flags, and other lines we reuse frequently within our
makefile.

So, the ${CXX} ${CXXFLAGS} -c lib.cpp -o lib.o  line is equivalent to g++ -g -Wall -c lib.cpp -o lib.o  - In this
case, we add the -c  argument to tell g++ to only compile and output object files without linking
and building an executable.

make clean  will remove all previous build files, make  will recompile our project given the sources
have been updated. Make will not recompile sources that are not modified or dependent on
modified files.

For a more portable makefile, feel free to use the template below, and just replacce the variables
with whatever is relevant to your project.

#------------------------------------------------------------------------------
# Clean last build
clean:
	rm -f *.o exe

CC = cc

FLAGS = -g -Wall

SRC = source.c mylib-source.c

LINK_TARGET = ls3

REBUILDABLES = $(LINK_TARGET)

# Build the example
###################################################################
############

all: $(LINK_TARGET)

$(LINK_TARGET): $(SRC)
	${CC} $(FLAGS) $^ -o $@

# Clean previous builds



Our example project will have the following file structure -

This is a simple format and useful for learning CMake, once you have this working you can
reorganize it as needed or follow a more in-depth tutorial elsewhere, this is only an example of a
simple 'hello world program', so we won't need to create any extra subdirectories.

Within the root directory we can setup our project by defining the relevant subdirectories and
cmake options, see the CMakeLists.txt  file below

###################################################################
############

clean:
	rm -f $(REBUILDABLES)

CMake

some/dir/project/
├── src
│   ├── CMakeLists.txt
│   ├── header.h
│   ├── lib-test.cpp
│   ├── one.cpp
│   └── two.cpp
└── CMakeLists.txt

###################################################################
#############
## A basic example of building an executable with CMake and linking libraries
## Legal  : All content (c) 2020 Shaun Reed, all rights reserved.
## Author : Shaun Reed
###################################################################
#############
# project/CMakeLists.txt

# Project setup
cmake_minimum_required(VERSION 2.8)
# Here, we name our project
project(hello-world CXX)



Now, from within the project/src/  directory, we create the following CMakeLists.txt to build our
libraries and executable -

Now, assuming all the source files configured with CMake above are present and valid, we can run
the following commands to build and compile our project.

include_directories(${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR})

# Testing
# An example of how an option could create multiple build paths
option(CMAKE_FIRST_TEST "Should we build our test application?" ON)
if(CMAKE_FIRST_TEST)
	# Since this is set to ON, we add the subdirectory for our source code
	# Be sure this reflects the folder name containing the next CMakeLists to further direct cmake
    add_subdirectory(src)
endif()

###################################################################
#############
## About  : Building an executable with CMake and linking custom libraries 
## Legal  : All content (c) 2020 Shaun Reed, all rights reserved.
## Author : Shaun Reed
###################################################################
#############
# project/src/CMakeLists.txt

# Creating executables
set(FIRST_EXECUTABLE_CMAKE_SOURCES one.cpp)
add_executable(one ${FIRST_EXECUTABLE_CMAKE_SOURCES})

set(SECOND_EXECUTABLE_CMAKE_SOURCES two.cpp)
add_executable(two ${SECOND_EXECUTABLE_CMAKE_SOURCES})

#Creating libraries
set(FIRST_STATIC_LIBRARY lib-test.cpp)
add_library(TestLibrary STATIC ${FIRST_STATIC_LIBRARY})

#Linking libraries to executables
target_link_libraries(one TestLibrary)
target_link_libraries(two TestLibrary)



That's it! Running the commands above ensure that our build files output won't clutter up our
project. First, we create a new directory to build into, then we move inside it and run cmake ..  - this
tells cmake to run on the previous directory and as a result outputs the build files into our current
directory. Then, we can cmake --build .  to build the files cmake created, which outputs and
executables defined in our project.

mkdir build
cd build
cmake .. && cmake --build .



Maybe worth looking through these - Wikipedia: Index of C++ Idioms

See Bjarne Strostrup's C++11 FAQ for several examples

ACCU Recommended Reading

C++ Core Guidelines GitHub repository

You can get offline versions of cppreference, for me the most notable option is the offline
cppreference manpages available on GitHub. Installation instructions are provided in the github
repository README. They're nice when you need to take a quick look, but maybe the full HTML
page is better if you're exploring / browsing.

In a C++ program you can check which version is being ran with the following code.

When writing #include "lib-custom.h" , the compiler checks the CWD first, then the includes directory,
and will check system includes last.

When we write #include <iostream> , the compiler checks the includes directory first, then system
includes.

An lvalue is any value that has a location in memory. These can also be viewed as any value that
is accessible in more than one place anywhere within your code. These could be named objects,
pointers, or references. A general rule of thumb: if you can take it's address, it is an lvalue.

An rvalue refers to objects that are only accessible at one exact location within your code. These
could be temporary objects like by-value function return values, a collection of operations wrapped
in parenthesis that is substituted as the value of a new assignment, literal constants like 1 , 10 ,
'c' , or a "string-literal" . A general rule of thumb is if it is not an lvalue, it's an rvalue

Basics

if (__cplusplus == 201703L) std::cout << "C++17\n";
else if (__cplusplus == 201402L) std::cout << "C++14\n";
else if (__cplusplus == 201103L) std::cout << "C++11\n";
else if (__cplusplus == 199711L) std::cout << "C++98\n";
else if (__cplusplus == 202002L) std::cout << "C++20\n";
else std::cout << "pre-standard C++ (__cplusplus ==" << __cplusplus << ")\n";

https://en.wikibooks.org/wiki/More_C%2B%2B_Idioms
https://www.stroustrup.com/C++11FAQ.html#11
https://www.accu.org/reviews/by_rating/
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#c-core-guidelines
https://en.cppreference.com/w/Cppreference:Archives
https://github.com/jeaye/stdman
https://github.com/jeaye/stdman


The definition of these terms provide context for legal and illegal operations in C++. For example,
the following statements are legal

But the following statement is not legal, since in this context i++  is not an lvalue. That is, i++
doesn't have a location in memory until after the increment is applied, which makes this
assignment invalid.

Some examples of lvalues and rvalues in C++

Combining the two statements described above, we can better understand an assignment
operation

An expression is a mechanism for generating new values. May or may not contain operators,
constants, variables;

Literal constant is a value that is stated literally, without representation through a variable.

Constants are variables defined as const  given a type, name, and value

Const qualifiers are easiest when read right-to-left. For example, consider the following
declarations, where we look at differences in const values or pointers. If a value is const, it cannot
be changed. If a pointer is const, the location in memory that stores the data cannot be changed. A
const reference is considered undefined behavior, but a reference to a const value is permitted,
and often used to avoid the unnecessary copying of data.

We should notice in the examples below that we cannot assign a const value to a reference or
pointer to non-const data

int i = 0;
++i = 55 + 5;

i++ = 55;

int x;
x = 10; // x is an lvalue; 10 is an rvalue

int sizeDiff(const int &a, const int &b); // sizeDiff, a, and b are all lvalues; The int that is returned by sizeDiff, is 
an rvalue

int v = 0; // v and s are both lvalues
int s = 5; // 0 and 5 are both rvalues

int *px = sizeDiff(v, s); // *px is an lvalue; sizeDiff(v, s) is an rvalue 



When dealing with non-const data, the rules are slightly different. We should notice in the
examples below that we can assign a non-const value to a reference or pointer to const data

Array initialization can be done using any one of the examples below

int const x = 5; // A constant integer x
const int x = 5; // Also a constant integer x

int const & a = x; // Valid, a is a reference to the const value stored at the memory location of x
const int & b = x; // Valid, b is a reference to the const value stored at the memory location of x (Same as 
above)
int & c = x; // Error! Cannot assign a reference of const data(x) to reference to non-const data(c)

int const * d = &x; // Valid, d is a non-const pointer to the const data stored at the memory location of x
const int * e = &x; // Valid, e is a non-const pointer to the const data stored at the memory location of x (Same 
as above)
int * f = &x; // Error! Cannot assign pointer with non-const data to a reference with const data
int const * const g = &x; // Valid, g is a const pointer to const data stored at the memory location of x
const int * const h = &x; // Valid, h is a const pointer to const data stored at the memory location of x (Same as 
above)

int y = 10; // A non-const integer y

int * i = &y; // Valid, i is a non-const pointer to non-const data stored at the memory location of y
int * const j = &y; // Valid, j is a const pointer to non-const data stored at the memory location of y
int & k = y; // Valid, k is a reference to non-const data stored at the memory location of y

// With the below declarations, we add the const qualifier to previously non-const data
// This makes the value const when we attempt to access it through d, but y is still non-const to those who are 
within it's scope and able to access it.
int const & l = y; // Valid, l is a reference to const data stored at the memory location of y
const int & m = y; // Valid, m is a reference to const data stored at the memory location of y

// Any declaration with a const reference like those seen below is considered to be unspecified
// If you can find a compiler that lets this happen, the results can vary wildly
int & const n = y; // Error! Unspecified behavior when applying const to reference
int const & const o = y; // Error! Unspecified behavior when applying const to reference
const int & const p = y; // Error! Unspecified behavior when applying const to reference



C++ I/O Manipulators

These can simply be used inline with cout  statements, as in the example below

cppreference: std::exception

cppreference: try-block

int array[10]; // All values in array are initialized to an undetermined (arbitrary) value
int arr[10] = {1, 2, 3, 4}; // arr[0] = 1, arr[1] = 2, arr[2] = 3, arr[3] = 4, arr[4] = 0, arr[5] = 0...
int a[10] = { }; // a[0] = 0, a[1] = 0, a[2] = 0, ... , a[9] = 0
int a[5] = {2}; // a[0] = 2, a[1] = 0, ... , a[4] = 0
for (auto &e : a) e = 1; // a[0] = 1, ... , a[4] = 1
// Pay close attention to prefix and postfix decrement and increment below
// + As well as the use (or lack of) of referencing
for (auto e : a) std::cout << --e << std::endl; // 0 0 0 0 0
for (auto &e : a) std::cout << e++ << std::endl; // 1 1 1 1 1
for (auto e : a) std::cout << e << std::endl; // 2 2 2 2 2

Pretty Printing

#include <iostream>
#include <iomanip> 
using namespace std;

int main() {
    double A; cin >> A;
    double B; cin >> B;
    double C; cin >> C;

    std::cout << std::showbase << std::hex << std::left << std::nouppercase 
              << (long long) A << std::endl
              << std::right << std::showpos << std::setprecision(2) 
              << std::setw(15) << setfill('_') << std::fixed
              << B << std::endl
              << std::setprecision(9) << std::scientific << std::uppercase << std::noshowpos
              << C << std::endl;
}

Exceptions

https://en.cppreference.com/w/cpp/io/manip
https://en.cppreference.com/w/cpp/error/exception
https://en.cppreference.com/w/cpp/language/try_catch


We can define a custom exception with the class below

And we can then treat this class as a normal exception, since we inherit from the std::exception
interface

Unknown exceptions can be caught using ...  for the catch . Below, we provide a condition for the
std::bad_alloc  exception, a condition for general std::exceptions  (any exception that inherits from
std::exception ), and a final condition for any other exceptions that may occur.

#include <iostream>
#include <string>
#include <sstream>
#include <exception>
using namespace std

class BadLengthException : public std::exception {
  public:
    std::string err;
    BadLengthException(int n) : err(std::to_string(n)) { }
    virtual inline const char * what() const throw() { return err.c_str(); }
};

throw BadLengthException(n);

try {
  // ...
} catch (BadLengthException e) {
  cout << e.what() << '\n';
  // ...
}

    try {
      std::cout << Server::compute(A, B) << std::endl;
    }
    catch (std::bad_alloc &e) {
      std::cout << "Not enough memory" << std::endl;
    }
    catch (std::exception &e) {
      std::cout << "Exception: " << e.what() << std::endl;
    }
    catch (...) {



cppreference: std::tm

cppreference: std::get_time

cppreference: std::put_time

C++ has the above I/O helpers for formatting date and time output, and parsing input.
Unfortunately, while working on the Time Conversion  problem on HackerRank, I stumbled into a bug
with parsing the AM  / PM  porition of the time string. The bug caused the infomation to be lost, and
thus all time strings were defaulting to AM when I used the std::get_time  function to initialize a
std::tm  struct.

My final solution is below. Here is a link to the StackOverflow question that led me to this solution.
In the code below, I use strptime  and strftime  from the C header time.h . I'm sure there's a C++
way to do this, but currently this is the only method I'm familiar with.

Another HackerRank question that gave an opportunity to play with managing time in C++ was
Day of the Programmer. This question required we use a custom locale, and consider dates several
hundred years in the past. The locale for this question was RU, and we had to factor in a calendar
change that occured in 1917 for the Russian calendar. This is the reason for the if  statement and
second call to strptime  in the example below.

      std::cout << "Other Exception" << std::endl;
    }

Time Parsing

#include <time.h>

// Example: s == "7:30:15PM"
// Returns: "19:30:15"
string timeConversion(string s) {
  char result[100];
  std::tm t;
  strptime(s.c_str(), "%I:%M:%S%p", &t);
  strftime(result, sizeof(result), "%H:%M:%S", &t);
  return std::string(result);
}

Locales

https://en.cppreference.com/w/cpp/chrono/c/tm
https://en.cppreference.com/w/cpp/io/manip/get_time
https://en.cppreference.com/w/cpp/io/manip/put_time
https://stackoverflow.com/questions/53110175/does-stdget-time-have-a-bug


It's worth noting that using the above method, strptime  accounts for leap year and outputs correct
dates back to year 1900. See the official documentation for more information.

#include <time.h>

string dayOfProgrammer(int year) {
  std::tm t;
  char result[25];
  setlocale(LC_TIME, "ru_RU.UTF-8");
  strptime(std::string("256" + to_string(year)).c_str(), "%j%Y", &t);
  // The t.tm_year value represents number of years since 1900
  if (t.tm_year <= 17 && t.tm_year % 4 == 0) {
    strptime(std::string("255" + to_string(year)).c_str(), "%j%Y", &t);
  }
  strftime(result, sizeof(result), "%d.%m.%Y", &t);
  return std::string(result);
}



Encapsulation is a concept that is used to protect member variables and ensure that the object is
always in a certain state.

When creating classes in C++ we should use the access specifier below that best fits our
scenario. By default, when defining a class , all members are private  unless otherwise specified. In
contrast, when we define a struct , all members are public  unless otherwise specified. This is the
only difference between a class  and a struct  in C++, and all other concepts are interchangable
between the two. Both can have member functions, variables, friends, destructors, constructors,
etc.

When using inheritance access specifiers we should pay attention to how member access is
impacted. Consider the code below, where we notice a change in the way we access public  and
protected  members of the base class, A . In main, we try to access some of these members and
show which ones we can and cannot access. In each inheriting class, we define new public
members that access private or protected members to show that we have the ability to do so

Classes

Inheritance With Access Specifiers

class Test {
	int w;  // W is private in this context
  public:
  	int x;	// X is accessible from outside or inside of the class
  protected:
  	int y;	// Y is accessible from within the class, by members of the same class, and any derived classes
  private:
  	int z;	// Z is only accessible from within the class or by members of the same class
};

struct Test {
	int w;  // W is public in this context
  public:
  	int x;	// X is accessible from outside or inside of the class
  protected:
  	int y;	// Y is accessible from within the class, by members of the same class, and any derived classes
  private:
  	int z;	// Z is only accessible from within the class or by members of the same class
};



through inheritance, but only within the scope of the class or member definitions.

#include <iostream>

class A {
  // Private is the default access modifier within classes in c++
  int private_y; // This member will never be accessible from any derived class

public:
  A() {};
  // Because the destructor was declared virtual, every deriving class will call this destructor in sequence when 
being destroyed
  // So for class PublicA;  ~PublicA() -> ~A() is the order destructors will be called when leaving scope...
  //   or deleteing the object on the heap
  virtual ~A() { std::cout << "Deleting A\n";};

  int pub_x;

protected:
  int protected_x;

private:
  int private_x; // This member will never be accessible from any derived class
};

class PublicA : public A {
public:
  ~PublicA() {std::cout << "Deleting PublicA\n";};

  int a = pub_x; // In this context, pub_x is protected
  int b = protected_x; // In this context, protected_x is protected
};

class ProtectedA : protected A {
public:
  ~ProtectedA() {std::cout << "Deleting ProtectedA\n";};

  int a = pub_x; // In this context, pub_x is protected
  int b = protected_x; // In this context, protected_x is protected
};



In summary, this chart helps to describe the various combinations and results between base class
access identifiers and their derived class's inheritance access specifier.

class PrivateA : private A {
public:
  ~PrivateA() {std::cout << "Deleting PrivateA\n";};

  int a = pub_x; // In this context, pub_x is private
  int b = protected_x; // In this context, protected_x is private
};

int main (int const argc, char const * argv[])  {
  // Test destructor for base class A
  A * baseA = new A; // Allocate A on the heap
  delete baseA; // Free (delete) A from the heap

  PublicA publicA;
  publicA.pub_x = 5; // Valid, since pub_x, a, and b are all public
//  publicA.protected_x = 5; // Error! protected_x is protected in this context

  ProtectedA protectedA;
//  protectedA.pub_x = 5; // Error! pub_x is protected in this context
//  protectedA.protected_x = 5; // Error! protected_x is protected in this context

  PrivateA privateA;
//  privateA.pub_x = 5; // Error! pub_x is private in this context
//  privateA.protected_x = 5; // Error! protected_x is private in this context

  // Destructor called for each object on the stack at exit
  // Note: Since these are on the stack, they will be destroyed in reverse order
}



const  member functions that return bool can be referred to as predicates

Multiple-Inheritance is when a class inherits from more than one parent object or class.

An abstract class is one that cannot be instantiated without first being inherited from. This means
that by itself an abstract class can only be used as a base class for further implementation. An
abstract class may not be multiple-inherited, but they may contain state values (member
variables), and/or implementation (methods). Abstract classes can be inherited without
implementing the abastract methods, though such a derived class is abstract itself.

An example of an abstract classs Animal  that uses its own constructor. Notice that derived classes
Human  and Dog  each have specific constructors with respect to their parent class, Animal . The use
of the virtual  keyword in defining pure virtual functions makes this an abstract class, where
the implementation of speak  is definined for each derived class ( Human , and Dog , in this case) -

class Test {
  public:
	bool empty() const;	// empty() is a predicate in this context
};

Abstract Classes

#include <iostream>

class Animal {
public:
  // A constructor the AbstractClass depends on in order to be instantiated
  Animal(std::string name_) : name(name_) {};

https://knoats.com/uploads/images/gallery/2021-02/image-1612556828677.png


  // Implementation the AbstractClass takes with when derived from
  void showName() {
    std::cout << "Name: " << name << std::endl;
  }

  // A pure virtual function, required to be implemented by deriving classes
  virtual void speak() = 0; //...() = 0; required to be considered pure virtual 
  // The declaration above makes this class abstract; We need to define speak() before instantiating
  // The class can be instatiated by deriving from this base class, and instantiating the derived class
  
protected:
  // Protected member allows deriving classes to inherit while acting as private
  std::string name;
};

class Human : public Animal {
public:
  // A constructor for the Human class with respect to it's base class (Animal)
  Human(std::string name_) : Animal(name_) {};

  // speak() is defined for all Humans
  void speak() {
    std::cout << name << ": Hello!\n";
  }
};

class Dog : public Animal {
public:
  // A constructor for the `Dog` class with an additional unique parameter
  // Must still respect it's base class constructor parameter, and pass to Animal's ctor
  Dog(std::string name_, std::string sound_="Bark!")
  : Animal(name_), sound(sound_) {};

  // speak() is defined for all Dogs
  void speak() {
    std::cout << name << ": " << sound << std::endl;
  }

private:



Abstract class with no pure virtual member functions -

  // Note: The `sound` value could not be inherited further
  std::string sound;
};

int main (int const argc, char const * argv[])  {
  Human h("Shaun");
  h.speak();

  Dog d("Spot", "Bark!");
  d.speak();

  Dog f("Fluffy", "Yap!");
  f.speak();
}

#include <iostream>

/******************************************************************************/
// KeyData struct to hold data related to key ciphers
struct KeyData {
  explicit KeyData(std::string key) : keyWord_(std::move(key)) {};
  explicit KeyData() : keyWord_(GetKey()) {};
  // Pure virtual dtor to make abstract class despite no pure virtual members
  // + This works, because a base class should have a virtual dtor anyway
  virtual ~KeyData() = 0;

  // Allows getting keyWord when using KeyData default ctor
  static std::string GetKey()
  {
    std::string key;
    std::cout << "Enter the keyword: ";
    std::getline(std::cin, key);
    std::cout << "Keyword entered: \"" << key << "\"\n";
    return key;
  }

protected:
  std::string keyWord_;



An interface has no implementation, and contains only a virtual destructor and pure virtual
functions. virtual  destructors ensure that when an interface is destroyed, the correct destructors
will be called down the inheritance hierarchy. Interfaces have no state or implementation, they
may be multiple-inherited.

When dealing with dynamic memory allocation both operators new  or delete  are aware of
constructors and destructors. In contrast, malloc  and free  are not aware of class constructors or
destructors.

A deep copy is when we create or allocate new memory addresses and assign the values at these
addresses to match that of an existing object. See the example below, where A(A & rhs)
implements a deep-copy of the rhs  object. In the examples below, we also take advantage of
C++11's range-based-for by implementing begin()  and end  members that return an iterator (
int * ) to the beginning and end of the dynamic array.

};
// Definition of pure virtual dtor (required)
KeyData::~KeyData() {}

Interfaces

// TODO: Example of an interface

Constructors and Resource Management

#include <iostream>

class A {
  // Private is the default access modifier within classes in c++
  int private_y; // This member will never be accessible from any derived class

public:
  // ctor
  A(int size, int value)
  : size_(size), intArray_(new int[size]) {
    for (auto &e : *this) e = value;
  };

  // Copy ctor implementing a deep-copy of rhs
  A(A & rhs) :size_(rhs.size_), intArray_(new int[size_]) {
    std::copy(&rhs.intArray_[0], &rhs.intArray_[size_], intArray_);
  }



A shallow copy is when we create a copy of an object using references to the original location of
the data, as in the example below

  // dtor of base class with dynamic member is virtual to handle destruction
  ~A() {
    std::cout << "Deleting A\n";
    delete [] intArray_;
  }

  // Assignment operator utilizes copy ctor to create local copy
  A & operator=(A rhs) {
    std::swap(intArray_, rhs.intArray_);
    std::swap(size_, rhs.size_);
  }

  // Implementing begin and end for use with objects derived from this class
  int * begin() { return &intArray_[0];};
  int * end() { return &intArray_[size_];};

  void print() {
    for (auto e : *this) {
      std::cout << e << std::endl;
    }
    std::cout << std::endl;
  }

protected:
  int size_;
  int * intArray_; // Dynamic memory requires defintition of ctor, dtor, and op=
};

int main (int const argc, char const * argv[])  {
  // Test destructor for base class A
  A * baseA = new A(5, 1);
  baseA->print();
  delete baseA;
}



#include <iostream>

class A {
  // Private is the default access modifier within classes in c++
  int private_y; // This member will never be accessible from any derived class

public:
  // ctor
  A(int size, int value)
  : size_(size), intArray_(new int[size]) {
    for (auto &e : *this) e = value;
  };

  // Copy ctor implementing a shallow-copy of rhs
  A(A & rhs) :size_{rhs.size_}, intArray_{rhs.intArray_} {};

  // Warning: If this object is ever used to initialize another, we will face an error on destruction
  //   Because we created a shallow-copy, we cannot delete the dynamic allocation without corrupting another 
object
  ~A() {
    std::cout << "Deleting A\n"; //
    delete [] intArray_; // Error! Double free detected; Since we created a shallow copy in dynamic memory
  }

https://knoats.com/uploads/images/gallery/2021-02/image-1612561721331.png


  // Assignment operator utilizes copy ctor to create local copy
  A & operator=(A rhs) {
    std::swap(intArray_, rhs.intArray_);
    std::swap(size_, rhs.size_);
  }

  // Implementing begin and end for use with objects derived from this class
  int *begin() { return &intArray_[0];};
  int *end() { return &intArray_[size_];};

  void set(int value) {
    for (int &e : *this) e = value;
  }

  void print() {
    for (auto e : *this) {
      std::cout << e << std::endl;
    }
    std::cout << std::endl;
  }

protected:
  int size_;
  int * intArray_; // Dynamic memory requires defintition of ctor, dtor, and op=
};

int main (int const argc, char const * argv[])  {
  A * baseA = new A(5, 1);
  baseA->print();

  A b(*baseA); //
  b.print();
  b.set(5); // Since the class uses a shallow copy, the changes are refelcted within both objects

  // baseA and b both point to the same location in memory for intArray_
  baseA->print();
  b.print();

  A c(b);
  c.print();



A conversion constructor is a constructor with a single parameter that converts the argument at
invocation to the type of the object. A constructor with multiple parameters is considered implicit if
all but one parameter provide default values. For example, consider the code below

Implicit conversion ctors can cause trouble w/ function overloading through unintended type
conversions. Below, we see examples of applying explicit  to our constructors in class B , and
compare the results to a similar class A  that did not. See the main function for the final test and
comparisons between the classes, then check the definitions to see why.

  c.set(10); // Since the class uses a shallow copy, the changes are refelcted within all objects

  baseA->print();
  b.print();
  c.print();

  delete baseA;
}

#include <iostream>

class A {
public:
  // No explicit declaration allows implicit usage, converting to class type
  A() {};
  A(int val) : x(val), y('~') {};
  A(char character, int value = 5) : y(character), x(value) {};
  ~A() {};

  void show() {
    std::cout << "x: " << x << std::endl;
    std::cout << "y: " << y << "\n\n";
  }

  int x;
  char y;
};

class B {
public:
  // Declaring constructors explicit forces more strict usage



  explicit B() {};
  explicit B(int val) : x(val), y('~') {};
  explicit B(char character, int value = 5) : y(character), x(value) {};
  ~B() {};

  void show() {
    std::cout << "x: " << x << std::endl;
    std::cout << "y: " << y << "\n\n";
  }

  int x;
  char y;
};

int main (int const argc, char const * argv[])  {
  // All of the below is valid for class A, since we did not declare destructors explicit
  A a = 10;
  A a1(10);
  A a2 = {10};
  A a3 = 'c';
  A a4('c');
  A a5{'c'};
  A a6('c', 10);
  A a7{'c', 10};
  A a8 = {'c', 10};
  A a9 = (A)10;
  A a10 = (A)'x';
  A a11 = A('x');
  A a12 = A('x', 10);
  A a13 = A{'x'};
  A a14 = A{'x', 10};

  // For B, since we declared constructor explicit...
//B b = 5; // Error! Implicit type conversion not allowed with explict ctor
  B b1(5);
//B b2 = {5}; // Error! Implicit type conversion not allowed with explict ctor
//B b3 = 'x'; // Error! Implicit type conversion not allowed with explict ctor
  B b4('x');
//B b5 = {'x'}; // Error! Implicit type conversion not allowed with explict ctor
  B b6('x', 5);



Declaring static const member variables -

and in a seperate, source file -

If you want a member variable that is an iterator of this array -

  B b7{'x', 5};
//B b8 = {'x', 5}; // Error! Implicit type conversion not allowed with explict ctor
  B b9 = (B)5;
  B b10 = (B)'x';
  B b11 = B('x');
  B b12 = B('x', 5);
  B b13 = B{'x'};
  B b14 = B{'x', 5};
}

// SomeClass.hpp
class SomeClass {
public:
  CarFactory(std::string name, int number): 
  		someName(location), someNumber(number) {}
  ~Class(){}
private:
  std::string someName;
  int someNumber;
  const std::array<std::string, 4> someArray;
};

// SomeClass.cpp

const std::array<std::string, 4>
    SomeClass::someArray({"Thing1", "Thing2", "Thing3", "Thing4"});

class SomeClass {
public:
  CarFactory(std::string name, int number): 
  		someName(location), someNumber(number) {}
  ~Class(){}
private:
  std::string someName;
  int someNumber;



Overloading the ostream  operator <<  to allow printing an object directly to stdout for Person
objects.

  const std::array<std::string, 4> someArray;
  decltype(someArray)::iterator arrayIter = someArray.begin();
};

Operator Oveloading

std::ostream & operator<<(std::ostream & o, const Person & a) {
  o << "first_name=" << a.get_first_name() << ",last_name=" << a.get_last_name();
  return o;
}



Below are some of the useful methods and objects I found in documentation for the C++
Concurrency Support Library. This is of course not an exhaustive list, and only covers what I've
used in the examples later on this page.

std::mutex is a C++11 object which offers mutually exclusive ownership over shared resources
within a C++ program. The object is not directly associated with the shared resources via
construction or any other initialization, but instead the object is used to block program execution
should another thread want to step into a block of code that would attempt to modify a resource
that is currently in use elsewhere.

Mutex locks provide many functions, and after instatiation we can use these functions to enforce
ownership of shared resources.

Multithreading
C++ Concurrency Support

#include <chrono>
#include <iostream>
#include <mutex>
#include <thread>

int main(const int argc, const char * argv[]) {
  std::cout << "main() thread id: " << std::this_thread::get_id() << std::endl;

  static std::mutex mtx_A, mtx_B;

  std::thread thread_A([]()->void {
    mtx_A.lock(); // Call mutex member function std::mutex::lock()
    std::cout << std::this_thread::get_id() << " thread_A: Lock A\n";
    std::this_thread::sleep_for(std::chrono::seconds(3));
    mtx_A.unlock(); // Call mutex member function std::mutex::unlock()
    std::cout << std::this_thread::get_id() << " thread_A: Unlock A\n";
  });

  std::thread thread_B([]()->void {
    std::this_thread::sleep_for(std::chrono::seconds(1));

https://en.cppreference.com/w/cpp/thread
https://en.cppreference.com/w/cpp/thread
https://en.cppreference.com/w/cpp/thread/mutex


The output of this example should show the general idea. If you run this code, you will notice one
thread takes ownership, waits a few seconds, releases the object, and then the same is repeated
for the next thread.

You might notice my use of the std::this_thread  namespace, specifically std::this_thread::get_id()
and std::this_thread::sleep_for().I also use the std::chrono library often to define time periods for
the program to wait. For writing examples and testing multithreaded functionality of C++, these
methods will prove very useful, but keep in mind they are just to support examples - you typically
wouldn't want your program to wait for several seconds, and thus many of these examples can be
'fixed' by removing these methods. For instance, the livelock example on this page often results in
no livelock at all if I hadn't intentionally synchronized the iteration of loops within the opposing
threads. Sometimes you may see a livelock occur in that example naturally, but more often one
thread executes at a slightly different time, which breaks from the livelock and the program exits
normally. The examples serve as proof of concept, and not real world problems or scenarios.

std::lock is a function available in C++11 which handles the locking of N mutex objects, avoiding
the case of deadlock when any one of them is unavailable. This means that if any one of the mutex
objects passed to the call to std::lock , the program execution will be blocked until the resource is
available. When it becomes available, the resources are locked and execution continues.

std::try_lock is a function available in C++11 which is similar to std::lock  in that is handles locking
N objects for us and avoiding deadlock. The major difference here is what you would expect, the
return value. This function returns -1  if the resources have been successfully locked, and 0  if not.

    mtx_A.lock();
    std::this_thread::sleep_for(std::chrono::milliseconds(500));
    std::cout << std::this_thread::get_id() << " thread_B: Lock A\n";
    std::this_thread::sleep_for(std::chrono::seconds(3));
    mtx_A.unlock();
    std::cout << std::this_thread::get_id() << " thread_B: Unlock A\n";
  });

  thread_A.join();
  thread_B.join();
  return 0;
}

main() thread id: 140533678282560
140533678278400 thread_A: Lock A
140533678278400 thread_A: Unlock A
140533669885696 thread_B: Lock A
140533669885696 thread_B: Unlock A

https://en.cppreference.com/w/cpp/thread/get_id
https://en.cppreference.com/w/cpp/thread/sleep_for
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/thread/lock
https://en.cppreference.com/w/cpp/thread/try_lock


This means it can be used to programmatically react to resources that are currently unavailable.

RAII: Resource Acquisition Is Initialization descirbes the implementation of certain objects in C++
which encapsulate the initialization and deconstruction of required resources which may be shared
or unavailable at any point in time. There are many examples of objects that follow the RAII
concept in C++ concurrency libraries, listed below are only a few of these. RAII applies to heap
memory management, which is a much more common practice which programmers of all skill
levels would already be familiar with.

std::lock_guard is a C++11 object useful for managing a single mutex lock. The lock_guard  object
has a constructor which supports a single mutex as an argument, and on construction this object
will attempt to lock the mutex, obtaining ownership of it. If the mutex is already owned by another
object, the thread or program execution will be blocked at this call and will not proceed until the
resource has been released by the current owning object. When the program leaves the scope of
an owning lock_guard  object, the mutex is automatically released - we do not need to remember to
call unlock  or any similar function.

std::scoped_lock is a C++17 object useful for managing N mutex locks, which means scoped_lock
has a constructor that supports N arguments where each is a mutex we want to obtain ownership
of. A caveat to this object is that the constructor also supports 0 arguments, which means the
programmer can construct a scoped_lock  that doesn't ever lock a single mutex. The compiler will
not complain, whereas with lock_guard  the compiler will reject any attempt to construct the object
without providing a mutex to lock. Similar to lock_guard , when the program leaves the scope of a
scoped_lock  object, it will automatically call unlock  on all mutex locks it has ownership of.

std::unique_lock provides a C++11 method of deferred mutex locking, which supports constructing
locks without requiring the resource to be immediately available, using lock tags such as
std::defer_lock. Notably, unique_lock  is used in conjuction with std::condition_variable , which provides
sychronization support via notifications for blocked threads.

std::condition_variable is used alongside of unique_lock , where there is a shared value that is
modified to to signal the unblocking of a previously blocked thread. This is useful for synchronizing
events or jobs to continue processing only once the program has reached a valid state. An example
of using this method of synchronization can be seen in the code below.

/*##################################################################
############
## Author: Shaun Reed                                                         ##
## Legal: All Content (c) 2022 Shaun Reed, all rights reserved                ##
## About: An example of condition_variables in multithreaded C++              ##
##                                                                            ##
## Contact: shaunrd0@gmail.com  | URL: www.shaunreed.com | GitHub: shaunrd0   ##
###################################################################

https://en.cppreference.com/w/cpp/language/raii
https://en.cppreference.com/w/cpp/thread/lock_guard
https://en.cppreference.com/w/cpp/thread/scoped_lock
https://en.cppreference.com/w/cpp/thread/unique_lock
https://en.cppreference.com/w/cpp/thread/lock_tag
https://en.cppreference.com/w/cpp/thread/condition_variable


#############
*/

#include <chrono>
#include <condition_variable>
#include <iostream>
#include <mutex>
#include <thread>

static std::mutex mtx;
std::condition_variable cv;
bool processing = false;

// Starts a job that waits for kick-off from main
// + When job finishes, handoff result back to main via processing bool
void job(int32_t & shared) {
  std::unique_lock uniqueLock(mtx);
  cv.wait(uniqueLock, []()->bool {return processing;});
  std::cout << std::this_thread::get_id()
            << " thread_A: Initial value of shared = " << shared << std::endl;
  while (shared < INT32_MAX) {
    shared++;
  }
  // We're no longer processing data
  processing = false;
  std::cout << std::this_thread::get_id()
            << " thread_A: Done working." << std::endl;
  uniqueLock.unlock(); // Important! Unlock uniqueLock before we notify
  // Notify main that we've finished, so it can proceed
  cv.notify_one();
}

int main(const int argc, const char * argv[]) {
  std::cout << "main() thread id: " << std::this_thread::get_id() << std::endl;

  int32_t share = 0;
  std::thread thread_A(job, std::ref(share));

  mtx.lock();
  std::this_thread::sleep_for(std::chrono::seconds(3));



The output of this program shows that the value of share  in the main function is what we would
expect upon the unblocking of thread_A . Since this value was passed to the threads job using
std::ref , it is a reference to the same value and the modifications made by thread_A  are seen in
main as well.

std::basic_osyncstream provides a C++20 way to synchronize outputs to a shared stream, which
could be constructed with std::basic_osyncstream out(std::cout);  and use directly as if it were std::cout .
Unfortunately many compilers don't support this yet, but worth mentioning. See C++ compiler
support for more up to date information on compiler support in regards to more modern C++
versions.

For now, these are all the methods and objects I'll use in the examples below, but there is surely
always more to learn and I will return to update this page in the future as I improve upon or learn
new multithreading techniques and practices in C++.

Threads should not be confused with processes. A process can own several threads, while any
given thread can only be owned by a single process. In general, the lifetime of a process is outlined

  share = INT32_MAX / 2;
  processing = true;
  mtx.unlock();
  // Notify thread_A that its work can begin
  cv.notify_one();

  // Wait until thread_A finishes its work
  std::unique_lock uniqueLock(mtx);
  // Block execution until we are not processing
  cv.wait(uniqueLock, []()->bool { return !processing;});
  std::cout << std::this_thread::get_id() << " main(): final value of shared = "
            << share << std::endl;
  thread_A.join();

  return 0;
}

main() thread id: 139826095839040
139826095834880 thread_A: Initial value of shared = 1073741823
139826095834880 thread_A: Done working.
139826095839040 main(): final value of shared = 2147483647

Process Lifetime

https://en.cppreference.com/w/cpp/io/basic_osyncstream
https://en.cppreference.com/w/cpp/compiler_support#cpp20
https://en.cppreference.com/w/cpp/compiler_support#cpp20


below, where New-(Admitted)->Ready  describes the transisition between the New  and Ready  process
states following the Admitted  signal from the OS that created the thread.

New
New-(Admitted)->Ready

Ready
Ready-(Dispatch)->Running

Running
Running-(Interrupt)->Ready
Running-(Wait for I/O or Event)->Watiting
Running-(Exit)->Terminated

Waiting
Waiting-(I/O or Event Completed)->Ready

Terminated

When we call std::thread  and construct a new thread, we request a new thread from the OS, which
is supplied threads by the kernel, which manages the resources available to us by our hardware.

In general, operating systems have the following states for threads that they're managing.

Creation - Thread has been created but not allocated any resources yet
Ready - The thread has resources available to it, and is ready to be assigned some work
Running - The thread is running a job, which may result in any of the below states, which
will subsequently return to the Ready state, which transitions to a Running thread.

Waiting - The thread is waiting for some event or signal to return to the Ready state
Delayed - The thread has been delayed, usually to support more important
processing happening on other threads
Blocked - The thread requires a resource which is currently in use by another thread,
and is blocked until this resource is made available

Finished - The thread is finished, and is joined back into the owning process

These are the general steps taken by processses, including the operating system, when threads
are created, used, and destroyed. To destroy a thread we must first join it back into the owning
process which releases the resources back to the kernel for allocating to other threads.

The sections below contain programs that show examples for various problems and solutions in
multithreaded applications. These are just general examples and not real world problems, so many
of the problems were intentionally created to showcase a situation that can occur. If only interested
in the source code, check out my Git repository shaunrd0/klips where I practice general

Thread Lifetime

Examples

https://git.shaunreed.com/shaunrd0/klips/src/branch/master/cpp/multithreading


programming.

The following program is an example of the problem()  and solution()  to race conditions in C++. This
is a basic example, and just shows what can happen if two or more threads happen to access the
same variable simultaneously. Since the value of x  is shared, and this value is incremented within
a for  loop by all 5 threads, the value of x  can be the same when the increment is applied in some
undefined number of threads.

This means that each time we run the program, the output of problem()  will vary from 1000000-
5000000. This variation in final output is due to the undefined number of threads that
simultaneously access x  which incrementing it within the loop. In contrast, each time we run the
solution() , the value will always be the expected output of 5000000, because we have utilized the
concurrency features of C++ appropriately.

Race Conditions

/*##################################################################
############
## Author: Shaun Reed                                                         ##
## Legal: All Content (c) 2022 Shaun Reed, all rights reserved                ##
## About: An example of a race condition problem and solution                 ##
##                                                                            ##
## Contact: shaunrd0@gmail.com  | URL: www.shaunreed.com | GitHub: shaunrd0   ##
###################################################################
#############
*/

#include <iostream>
#include <thread>
#include <vector>
#include <mutex>

void problem() {
  std::vector<std::thread> threads;
  const uint8_t thread_count = 5;
  // With no mutex lock, the final value will vary in the range 1000000-5000000
  // + Threads will modify x simultaneously, so some iterations will be lost
  // + x will have same initial value entering this loop on different threads
  uint32_t x = 0;
  for (uint8_t i = 0; i < thread_count; i++) {
    threads.emplace_back([&x](){
      for (uint32_t i = 0; i < 1000000; i++) {



        x = x + 1;
      };
    });
  }
  // Ensure the function doesn't continue until all threads are finished
  // + There's no issue here, the issue is in how `x` is accessed above
  for (auto &thread : threads) thread.join();
  std::cout << x << std::endl;
}

// Create mutex lock to prevent threads from modifying same value simultaneously
static std::mutex mtx;
void solution() {
  std::vector<std::thread> threads;
  const uint8_t thread_count = 5;
  uint32_t x = 0;
  for (uint8_t i = 0; i < thread_count; i++) {
    threads.emplace_back([&x](){
      // The first thread that arrives here will 'lock' other threads from passing
      // + Once first thread finishes, the next thread will resume
      // + This process repeats until all threads finish
      std::lock_guard<std::mutex> lock(mtx);
      for (uint32_t i = 0; i < 1000000; i++) {
        x = x + 1;
      };
    });
  }
  // Ensure the function doesn't continue until all threads are finished
  for (auto &thread : threads) thread.join();
  std::cout << x << std::endl;
}

int main(const int argc, const char * argv[]) {
  // Result will vary from 1000000-5000000
  problem();

  // Result will always be 5000000
  solution();
  return 0;
}



The output of this program is

Deadlocks occur when two threads lock a shared resource from each other. In the example below,
thread_A  has locked mtx_A , and it wants to lock mtx_B . This is not possible, because thread_B  has
already locked mtx_B , and is now waiting to lock mtx_A . Neither of these locks will ever pass,
because the threads both require a common resource to continue.

For the sake of the example, I provide a way out of the deadlock situation within the problem()
function. Note that if it were not for this, the program would simply never finish execution. It would
wait forever, as neither resource would ever become available to the opposing thread. I have split
this code between several blocks with short explanations of each problem / solution, but all code
within this section is within the same program. The full example can be found in my general
programming practice repository, klips.

1374956
5000000

Deadlocks

/*##################################################################
############
## Author: Shaun Reed                                                         ##
## Legal: All Content (c) 2022 Shaun Reed, all rights reserved                ##
## About: An example and solution for deadlocks in C++                        ##
##                                                                            ##
## Contact: shaunrd0@gmail.com  | URL: www.shaunreed.com | GitHub: shaunrd0   ##
###################################################################
#############
*/

#include <chrono>
#include <iostream>
#include <mutex>
#include <sstream>
#include <thread>

static std::mutex mtx_A, mtx_B, output;

// Helper function to output thread ID and string associated with mutex name
// + This must also be thread-safe, since we want threads to produce output
// + There is no bug or issue here; This is just in support of example output

http://git.shaunreed.com/shaunrd0/klips


void print_safe(const std::string & s) {
  std::scoped_lock<std::mutex> scopedLock(output);
  std::cout << s << std::endl;
}

// Helper function to convert std::thread::id to string
std::string id_string(const std::thread::id & id) {
  std::stringstream stream;
  stream << id;
  return stream.str();
}

// In the two threads within this function, we have a problem
// + The mutex locks are acquired in reverse order, so they collide
// + This is called a deadlock; The program will *never* finish
void problem() {
  std::thread thread_A([]()->void {
    mtx_A.lock();
    print_safe(id_string(std::this_thread::get_id()) + " thread_A: Locked A");
    std::this_thread::sleep_for(std::chrono::seconds(1));
    mtx_B.lock(); // We can't lock B! thread_B is using it
    // The program will never reach this point in execution; We are in deadlock
    print_safe(id_string(std::this_thread::get_id())
               + " thread_A: B has been unlocked, we can proceed!\n  Locked B"
    );
    std::this_thread::sleep_for(std::chrono::seconds(1));

    print_safe(id_string(std::this_thread::get_id())
               + " thread_A: Unlocking A, B..."
    );
    mtx_A.unlock();
    mtx_B.unlock();
  });

  std::thread thread_B([]()->void {
    mtx_B.lock();
    print_safe(id_string(std::this_thread::get_id()) + " thread_B: Locked B");
    std::this_thread::sleep_for(std::chrono::seconds(1));
    mtx_A.lock(); // We can't lock A! thread_A is using it
    // The program will never reach this point in execution; We are in deadlock



There are a few solutions we could use to work around this problem. We could use std::lock, which
is available in C++11. With this approach, we still need to remember to unlock each mutex, or else
we end up in a deadlock situation again. The only difference is that this time we caused it ourselves
by forgetting to unlock the resource instead of two threads with a conflict of interest.

    print_safe(id_string(std::this_thread::get_id())
               + " thread_B: A has been unlocked, we can proceed!\n  Locked A"
    );
    std::this_thread::sleep_for(std::chrono::seconds(1));

    print_safe(id_string(std::this_thread::get_id())
               + " thread_B: Unlocking B, A..."
    );
    mtx_B.unlock();
    mtx_A.unlock();
  });

  // This offers a way out of the deadlock, so we can proceed to the solution
  std::this_thread::sleep_for(std::chrono::seconds(2));
  char input;
  print_safe("\n"
             + id_string(std::this_thread::get_id())
             + " problem(): We are in a deadlock. \n"
             + "    Enter y/Y to continue to the solution...\n"
  );
  while (std::cin >> input) {
    if (input != 'Y' && input != 'y') continue;
    else break;
  }
  print_safe(id_string(std::this_thread::get_id())
             + " problem(): Unlocking A, B..."
  );
  mtx_A.unlock();
  mtx_B.unlock();

  thread_A.join();
  thread_B.join();
}

https://en.cppreference.com/w/cpp/thread/lock


We could also use std::lock_guard, which is also available in C++11. The benefit to constructing
this object is that we are not required to remember to unlock either mutex. lock_guard  has a
constructor which takes a single argument for one mutex to manage for us. This means we need
two lock_guard  objects to work around this deadlock situation.

// std::lock will lock N mutex locks
// + If either is in use, execution will block until both are available to lock
void solution_A() {
  std::thread thread_A([]()->void {
    std::lock(mtx_A, mtx_B);
    print_safe(id_string(std::this_thread::get_id()) + ": Locked A, B");
    std::this_thread::sleep_for(std::chrono::seconds(1));

    print_safe(id_string(std::this_thread::get_id()) + ": Unlocking A, B...");
    mtx_A.unlock();
    mtx_B.unlock();
  });

  std::thread thread_B([]()->void {
    std::lock(mtx_B, mtx_A);
    print_safe(id_string(std::this_thread::get_id()) + ": Locked B, A");
    std::this_thread::sleep_for(std::chrono::seconds(1));

    print_safe(id_string(std::this_thread::get_id()) + ": Unlocking B, A...");
    mtx_B.unlock();
    mtx_A.unlock();
  });

  thread_A.join();
  thread_B.join();
}

// std::lock_guard is a C++11 object which can be constructed with 1 mutex
// + When the program leaves the scope of the guard, the mutex is unlocked
void solution_B() {
  std::thread thread_A([]()->void {
    // lock_guard will handle unlocking when program leaves this scope
    std::lock_guard<std::mutex> guard_A(mtx_A), guard_B(mtx_B);
    print_safe(id_string(std::this_thread::get_id()) + ": Locked A, B");
    std::this_thread::sleep_for(std::chrono::seconds(1));

https://en.cppreference.com/w/cpp/thread/lock_guard


A third and final example of a solution to deadlocks is using the std::scoped_lock object available in
C++17. This object has a constructor that takes N arguments, each one being a mutex we want
the object to manage for us. This means for N mutex locks, we only need one scoped_lock  object.
When the program leaves the scope of this object, all mutex locks will be unlocked for us, so we
don't need to remember to do this ourselves.

    print_safe(id_string(std::this_thread::get_id()) + ": Unlocking A, B...");
    // We don't need to explicitly unlock either mutex
  });

  std::thread thread_B([]()->void {
    std::lock_guard<std::mutex> guard_B(mtx_B), guard_A(mtx_A);
    print_safe(id_string(std::this_thread::get_id()) + ": Locked B, A");
    std::this_thread::sleep_for(std::chrono::seconds(1));

    print_safe(id_string(std::this_thread::get_id()) + ": Unlocking B, A...");
    // We don't need to explicitly unlock either mutex
  });

  thread_A.join();
  thread_B.join();
}

// std::scoped_lock is a C++17 object that can be constructed with N mutex
// + When the program leaves this scope, all N mutex will be unlocked
void solution_C() {
  std::thread thread_A([]()->void {
    // scoped_lock will handle unlocking when program leaves this scope
    std::scoped_lock scopedLock(mtx_A, mtx_B);
    print_safe(id_string(std::this_thread::get_id()) + ": Locked A, B");
    std::this_thread::sleep_for(std::chrono::seconds(1));

    print_safe(id_string(std::this_thread::get_id()) + ": Unlocking A, B...");
    // We don't need to explicitly unlock either mutex
  });

  std::thread thread_B([]()->void {
    std::scoped_lock scopedLock(mtx_B, mtx_A);
    print_safe(id_string(std::this_thread::get_id()) + ": Locked B, A");

https://en.cppreference.com/w/cpp/thread/scoped_lock


The output of this program is

    std::this_thread::sleep_for(std::chrono::seconds(1));

    print_safe(id_string(std::this_thread::get_id()) + ": Unlocking B, A...");
    // We don't need to explicitly unlock either mutex
  });

  thread_A.join();
  thread_B.join();
}

int main(const int argc, const char * argv[]) {
  std::cout << "main() thread id: " << std::this_thread::get_id() << std::endl;

  problem();

  print_safe("\nsolution_A, using std::lock\n");
  solution_A();

  print_safe("\nsolution_B, using std::lock_guard\n");
  solution_B();

  print_safe("\nsolution_C, using std::scoped_lock\n");
  solution_C();

  return 0;
}

main() thread id: 140625995487040
140625995482880 thread_A: Locked A
140625987090176 thread_B: Locked B

140625995487040 problem(): We are in a deadlock. 
    Enter y/Y to continue to the solution...

y
140625995487040 problem(): Unlocking A, B...
140625995482880 thread_A: B has been unlocked, we can proceed!
  Locked B



All that said, why would one choose to use std::lock_guard over std::scoped_lock? If there is only a
need to lock a single resource, the use of scoped_lock  just isn't necessary. An added benefit to
using lock_guard  is it's availability in C++11, whereas scoped_lock  isn't available until C++17. Also,
the constructor for scoped_lock  can technically accept 0 arguments. This means that one can forget
to pass the mutex locks required for thread-safe code, and the compiler will happily accept their
code. By using lock_guard  when possible, we enlist the compiler's help in avoiding a small oversight
in the use of scoped_lock .

A livelock occurs when thread_A  has ownership of mtx_A , and thread_B  has ownership of mtx_B .
Each thread attempts to lock the opposing mutex, and when the thread realizes the mutex is
already locked, they attempt to take corrective action and unlock their resource. The intention is to

140625987090176 thread_B: A has been unlocked, we can proceed!
  Locked A
140625995482880 thread_A: Unlocking A, B...
140625987090176 thread_B: Unlocking B, A...

solution_A, using std::lock

140625987090176: Locked A, B
140625987090176: Unlocking A, B...
140625995482880: Locked B, A
140625995482880: Unlocking B, A...

solution_B, using std::lock_guard

140625995482880: Locked A, B
140625995482880: Unlocking A, B...
140625987090176: Locked B, A
140625987090176: Unlocking B, A...

solution_C, using std::scoped_lock

140625987090176: Locked A, B
140625987090176: Unlocking A, B...
140625995482880: Locked B, A
140625995482880: Unlocking B, A...

Process finished with exit code 0

Livelocks

https://en.cppreference.com/w/cpp/thread/lock_guard
https://en.cppreference.com/w/cpp/thread/scoped_lock


free up the resource for the other thread so it can complete it's work, but in some cases the
threads continually lock and unlock their resources, running into the same problem each time.

This is a weird one to provide an example for, and I had to do some synchonization between the
loops in thread_A  and thread_B  to make the results consistent. The threads will only enter livelock
for 5 iterations, and then thread_B  will give up, so the example can continue to show the solution.
This is kindof an odd case, since we have intentionally synchronized the loops to produce a livelock
situation, but I think the example shows the general idea.

/*##################################################################
############
## Author: Shaun Reed                                                         ##
## Legal: All Content (c) 2022 Shaun Reed, all rights reserved                ##
## About: An example and solution for livelocks in C++                        ##
##                                                                            ##
## Contact: shaunrd0@gmail.com  | URL: www.shaunreed.com | GitHub: shaunrd0   ##
###################################################################
#############
*/

#include <chrono>
#include <iostream>
#include <mutex>
#include <thread>
#include <vector>

static std::mutex mtx_A, mtx_B, output;

// Helper function to output thread ID and string associated with mutex name
// + This must also be thread-safe, since we want threads to produce output
// + There is no bug or issue here; This is just in support of example output
void print_safe(const std::string & s) {
  std::scoped_lock<std::mutex> scopedLock(output);
  std::cout << s << std::endl;
}

void problem() {
  // Construct a vector with 5 agreed-upon times to synchronize loops in threads
  typedef std::chrono::time_point<std::chrono::steady_clock,
      std::chrono::steady_clock::duration> time_point;
  std::vector<time_point> waitTime(6);



  for (uint8_t i = 0; i < 6; i++) {
    waitTime[i] = std::chrono::steady_clock::now()+std::chrono::seconds(1+i);
  }

  std::thread thread_A([waitTime]()->void {
    uint8_t count = 0; // Used to select time slot from waitTime vector
    bool done = false;
    while (!done) {
      count++;
      std::lock_guard l(mtx_A);
      std::cout << std::this_thread::get_id() << " thread_A: Lock A\n";
      // Wait until the next time slot to continue
      // + Helps to show example of livelock by ensuring B is not available
      std::this_thread::sleep_until(waitTime[count]);
      std::cout << std::this_thread::get_id() << " thread_A: Requesting B\n";
      if (mtx_B.try_lock()) {
        done = true;
        std::cout << std::this_thread::get_id()
                  << " thread_A: Acquired locks for A, B! Done.\n";
      }
      else {
        std::cout << std::this_thread::get_id()
                  << " thread_A: Can't lock B, unlocking A\n";
      }
    }
    mtx_B.unlock();
  });

  std::thread thread_B([waitTime]()->void {
    // As an example, enter livelock for only 5 iterations
    // + Also used to select time slot from waitTime vector
    uint8_t count = 0;
    bool done = false;
    while (!done && count < 5) {
      count++;
      std::lock_guard l(mtx_B);
      // Wait until the next time slot to continue
      // + Helps to show example of livelock by ensuring A is not available
      std::this_thread::sleep_until(waitTime[count]);
      if (mtx_A.try_lock()) {



        // The program will never reach this point in the code
        // + The only reason livelock ends is because count > 5
        done = true;
      }
    }
  });

  thread_A.join();
  thread_B.join();
}

// The solution below uses std::scoped_lock to avoid the livelock problem
void solution() {
  std::thread thread_A([]()->void {
    for (int i = 0; i < 5; i++) {
      // Increase wait time with i
      // + To encourage alternating lock ownership between threads
      std::this_thread::sleep_for(std::chrono::milliseconds(100 * i));
      std::scoped_lock l(mtx_A, mtx_B);
      std::cout << std::this_thread::get_id()
                << " thread_A: Acquired locks for A, B!" << std::endl;
    }
  });

  std::thread thread_B([]()->void {
    for (int i = 0; i < 5; i++) {
      std::this_thread::sleep_for(std::chrono::milliseconds(100 * i));
      std::scoped_lock l(mtx_B, mtx_A);
      std::cout << std::this_thread::get_id()
                << " thread_B: Acquired locks for B, A!" << std::endl;
    }
  });

  thread_A.join();
  thread_B.join();
}

int main(const int argc, const char * argv[]) {
  std::cout << "main() thread id: " << std::this_thread::get_id() << std::endl;



The output of this program shows A  requesting B , realizing it can't, and then releasing it's
resource. What we can't see in this output is the activity of thread_B  - this is just because it was
very vertical, and I thought the output from thread_A  was enough to show as an example.

The solution output shows the threads alternating ownership of the mutex locks between
iterations.

  problem();

  std::cout << "\nSolution:\n\n";
  solution();

  return 0;
}

main() thread id: 140684728141632
140684728137472 thread_A: Lock A
140684728137472 thread_A: Requesting B
140684728137472 thread_A: Can't lock B, unlocking A
140684728137472 thread_A: Lock A
140684728137472 thread_A: Requesting B
140684728137472 thread_A: Can't lock B, unlocking A
140684728137472 thread_A: Lock A
140684728137472 thread_A: Requesting B
140684728137472 thread_A: Can't lock B, unlocking A
140684728137472 thread_A: Lock A
140684728137472 thread_A: Requesting B
140684728137472 thread_A: Can't lock B, unlocking A
140684728137472 thread_A: Lock A
140684728137472 thread_A: Requesting B
140684728137472 thread_A: Acquired locks for A, B! Done.

Solution:

140684728137472 thread_B: Acquired locks for B, A!
140684719744768 thread_A: Acquired locks for A, B!
140684728137472 thread_B: Acquired locks for B, A!
140684719744768 thread_A: Acquired locks for A, B!
140684728137472 thread_B: Acquired locks for B, A!
140684719744768 thread_A: Acquired locks for A, B!



Some other references that I found online while working on these examples.

approxion: lock_guard vs scoped_lock

bogotobogo: multithreaded C++

deathbytape - C++ threading

acodersjourney - 20 threading mistakes

zitoc - Process Lifecycle

140684728137472 thread_B: Acquired locks for B, A!
140684719744768 thread_A: Acquired locks for A, B!
140684728137472 thread_B: Acquired locks for B, A!
140684719744768 thread_A: Acquired locks for A, B!

References

https://www.approxion.com/why-i-still-use-stdlock_guard/
https://www.bogotobogo.com/cplusplus/multithreaded.php
https://deathbytape.com/articles/2015/02/03/cpp-threading.html
https://www.acodersjourney.com/top-20-cplusplus-multithreading-mistakes/
https://zitoc.com/process-life-cycle/

