
Maybe worth looking through these - Wikipedia: Index of C++ Idioms

See Bjarne Strostrup's C++11 FAQ for several examples

ACCU Recommended Reading

C++ Core Guidelines GitHub repository

You can get offline versions of cppreference, for me the most notable option is the offline
cppreference manpages available on GitHub. Installation instructions are provided in the github
repository README. They're nice when you need to take a quick look, but maybe the full HTML
page is better if you're exploring / browsing.

In a C++ program you can check which version is being ran with the following code.

When writing #include "lib-custom.h" , the compiler checks the CWD first, then the includes directory,
and will check system includes last.

When we write #include <iostream> , the compiler checks the includes directory first, then system
includes.

An lvalue is any value that has a location in memory. These can also be viewed as any value that
is accessible in more than one place anywhere within your code. These could be named objects,
pointers, or references. A general rule of thumb: if you can take it's address, it is an lvalue.

An rvalue refers to objects that are only accessible at one exact location within your code. These
could be temporary objects like by-value function return values, a collection of operations wrapped
in parenthesis that is substituted as the value of a new assignment, literal constants like 1 , 10 ,
'c' , or a "string-literal" . A general rule of thumb is if it is not an lvalue, it's an rvalue

Basics

if (__cplusplus == 201703L) std::cout << "C++17\n";
else if (__cplusplus == 201402L) std::cout << "C++14\n";
else if (__cplusplus == 201103L) std::cout << "C++11\n";
else if (__cplusplus == 199711L) std::cout << "C++98\n";
else if (__cplusplus == 202002L) std::cout << "C++20\n";
else std::cout << "pre-standard C++ (__cplusplus ==" << __cplusplus << ")\n";

https://en.wikibooks.org/wiki/More_C%2B%2B_Idioms
https://www.stroustrup.com/C++11FAQ.html#11
https://www.accu.org/reviews/by_rating/
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#c-core-guidelines
https://en.cppreference.com/w/Cppreference:Archives
https://github.com/jeaye/stdman
https://github.com/jeaye/stdman


The definition of these terms provide context for legal and illegal operations in C++. For example,
the following statements are legal

But the following statement is not legal, since in this context i++  is not an lvalue. That is, i++
doesn't have a location in memory until after the increment is applied, which makes this
assignment invalid.

Some examples of lvalues and rvalues in C++

Combining the two statements described above, we can better understand an assignment
operation

An expression is a mechanism for generating new values. May or may not contain operators,
constants, variables;

Literal constant is a value that is stated literally, without representation through a variable.

Constants are variables defined as const  given a type, name, and value

Const qualifiers are easiest when read right-to-left. For example, consider the following
declarations, where we look at differences in const values or pointers. If a value is const, it cannot
be changed. If a pointer is const, the location in memory that stores the data cannot be changed. A
const reference is considered undefined behavior, but a reference to a const value is permitted,
and often used to avoid the unnecessary copying of data.

We should notice in the examples below that we cannot assign a const value to a reference or
pointer to non-const data

int i = 0;
++i = 55 + 5;

i++ = 55;

int x;
x = 10; // x is an lvalue; 10 is an rvalue

int sizeDiff(const int &a, const int &b); // sizeDiff, a, and b are all lvalues; The int that is returned by sizeDiff, is 
an rvalue

int v = 0; // v and s are both lvalues
int s = 5; // 0 and 5 are both rvalues

int *px = sizeDiff(v, s); // *px is an lvalue; sizeDiff(v, s) is an rvalue 



When dealing with non-const data, the rules are slightly different. We should notice in the
examples below that we can assign a non-const value to a reference or pointer to const data

Array initialization can be done using any one of the examples below

int const x = 5; // A constant integer x
const int x = 5; // Also a constant integer x

int const & a = x; // Valid, a is a reference to the const value stored at the memory location of x
const int & b = x; // Valid, b is a reference to the const value stored at the memory location of x (Same as 
above)
int & c = x; // Error! Cannot assign a reference of const data(x) to reference to non-const data(c)

int const * d = &x; // Valid, d is a non-const pointer to the const data stored at the memory location of x
const int * e = &x; // Valid, e is a non-const pointer to the const data stored at the memory location of x (Same 
as above)
int * f = &x; // Error! Cannot assign pointer with non-const data to a reference with const data
int const * const g = &x; // Valid, g is a const pointer to const data stored at the memory location of x
const int * const h = &x; // Valid, h is a const pointer to const data stored at the memory location of x (Same as 
above)

int y = 10; // A non-const integer y

int * i = &y; // Valid, i is a non-const pointer to non-const data stored at the memory location of y
int * const j = &y; // Valid, j is a const pointer to non-const data stored at the memory location of y
int & k = y; // Valid, k is a reference to non-const data stored at the memory location of y

// With the below declarations, we add the const qualifier to previously non-const data
// This makes the value const when we attempt to access it through d, but y is still non-const to those who are 
within it's scope and able to access it.
int const & l = y; // Valid, l is a reference to const data stored at the memory location of y
const int & m = y; // Valid, m is a reference to const data stored at the memory location of y

// Any declaration with a const reference like those seen below is considered to be unspecified
// If you can find a compiler that lets this happen, the results can vary wildly
int & const n = y; // Error! Unspecified behavior when applying const to reference
int const & const o = y; // Error! Unspecified behavior when applying const to reference
const int & const p = y; // Error! Unspecified behavior when applying const to reference



C++ I/O Manipulators

These can simply be used inline with cout  statements, as in the example below

cppreference: std::exception

cppreference: try-block

int array[10]; // All values in array are initialized to an undetermined (arbitrary) value
int arr[10] = {1, 2, 3, 4}; // arr[0] = 1, arr[1] = 2, arr[2] = 3, arr[3] = 4, arr[4] = 0, arr[5] = 0...
int a[10] = { }; // a[0] = 0, a[1] = 0, a[2] = 0, ... , a[9] = 0
int a[5] = {2}; // a[0] = 2, a[1] = 0, ... , a[4] = 0
for (auto &e : a) e = 1; // a[0] = 1, ... , a[4] = 1
// Pay close attention to prefix and postfix decrement and increment below
// + As well as the use (or lack of) of referencing
for (auto e : a) std::cout << --e << std::endl; // 0 0 0 0 0
for (auto &e : a) std::cout << e++ << std::endl; // 1 1 1 1 1
for (auto e : a) std::cout << e << std::endl; // 2 2 2 2 2

Pretty Printing

#include <iostream>
#include <iomanip> 
using namespace std;

int main() {
    double A; cin >> A;
    double B; cin >> B;
    double C; cin >> C;

    std::cout << std::showbase << std::hex << std::left << std::nouppercase 
              << (long long) A << std::endl
              << std::right << std::showpos << std::setprecision(2) 
              << std::setw(15) << setfill('_') << std::fixed
              << B << std::endl
              << std::setprecision(9) << std::scientific << std::uppercase << std::noshowpos
              << C << std::endl;
}

Exceptions

https://en.cppreference.com/w/cpp/io/manip
https://en.cppreference.com/w/cpp/error/exception
https://en.cppreference.com/w/cpp/language/try_catch


We can define a custom exception with the class below

And we can then treat this class as a normal exception, since we inherit from the std::exception
interface

Unknown exceptions can be caught using ...  for the catch . Below, we provide a condition for the
std::bad_alloc  exception, a condition for general std::exceptions  (any exception that inherits from
std::exception ), and a final condition for any other exceptions that may occur.

#include <iostream>
#include <string>
#include <sstream>
#include <exception>
using namespace std

class BadLengthException : public std::exception {
  public:
    std::string err;
    BadLengthException(int n) : err(std::to_string(n)) { }
    virtual inline const char * what() const throw() { return err.c_str(); }
};

throw BadLengthException(n);

try {
  // ...
} catch (BadLengthException e) {
  cout << e.what() << '\n';
  // ...
}

    try {
      std::cout << Server::compute(A, B) << std::endl;
    }
    catch (std::bad_alloc &e) {
      std::cout << "Not enough memory" << std::endl;
    }
    catch (std::exception &e) {
      std::cout << "Exception: " << e.what() << std::endl;
    }
    catch (...) {



cppreference: std::tm

cppreference: std::get_time

cppreference: std::put_time

C++ has the above I/O helpers for formatting date and time output, and parsing input.
Unfortunately, while working on the Time Conversion  problem on HackerRank, I stumbled into a bug
with parsing the AM  / PM  porition of the time string. The bug caused the infomation to be lost, and
thus all time strings were defaulting to AM when I used the std::get_time  function to initialize a
std::tm  struct.

My final solution is below. Here is a link to the StackOverflow question that led me to this solution.
In the code below, I use strptime  and strftime  from the C header time.h . I'm sure there's a C++
way to do this, but currently this is the only method I'm familiar with.

Another HackerRank question that gave an opportunity to play with managing time in C++ was
Day of the Programmer. This question required we use a custom locale, and consider dates several
hundred years in the past. The locale for this question was RU, and we had to factor in a calendar
change that occured in 1917 for the Russian calendar. This is the reason for the if  statement and
second call to strptime  in the example below.

      std::cout << "Other Exception" << std::endl;
    }

Time Parsing

#include <time.h>

// Example: s == "7:30:15PM"
// Returns: "19:30:15"
string timeConversion(string s) {
  char result[100];
  std::tm t;
  strptime(s.c_str(), "%I:%M:%S%p", &t);
  strftime(result, sizeof(result), "%H:%M:%S", &t);
  return std::string(result);
}

Locales

https://en.cppreference.com/w/cpp/chrono/c/tm
https://en.cppreference.com/w/cpp/io/manip/get_time
https://en.cppreference.com/w/cpp/io/manip/put_time
https://stackoverflow.com/questions/53110175/does-stdget-time-have-a-bug


It's worth noting that using the above method, strptime  accounts for leap year and outputs correct
dates back to year 1900. See the official documentation for more information.

#include <time.h>

string dayOfProgrammer(int year) {
  std::tm t;
  char result[25];
  setlocale(LC_TIME, "ru_RU.UTF-8");
  strptime(std::string("256" + to_string(year)).c_str(), "%j%Y", &t);
  // The t.tm_year value represents number of years since 1900
  if (t.tm_year <= 17 && t.tm_year % 4 == 0) {
    strptime(std::string("255" + to_string(year)).c_str(), "%j%Y", &t);
  }
  strftime(result, sizeof(result), "%d.%m.%Y", &t);
  return std::string(result);
}

Revision #21
Created 5 February 2021 18:44:59 by Shaun Reed
Updated 3 April 2022 14:56:57 by Shaun Reed


