
If you use vim, you can bind CTRL-B to build a cmake project

Within bash, you can easily build a single C++ source file into an executable with g++ -g -Wall
source.cpp , this will output an a.out file which is the default name for the resulting executable. If
you want to name this file, pass the -o argument as follows g++ -g -Wall source.cpp -o executable

Now, we can run the executable with ./executable or ./a.out , so long as you are within the directory
where it exists and the build completed normally.

Note that you can also build with clang++ , and a C++ standard can be specified with clang++ -
std=c++11 cource.cpp

A simple makefile can be seen below, which can compile a project with a single make command.
Create your own with details specific to your project, and name it Makefile

Building Projects

nnoremap <C-b> :!cmake -S . -B ./build/ && cmake --build ./build

Building from Bash

Make

Makefile
#--
Set Local Variables
CXX = g++
CXXFLAGS = -g -Wall

#--
Build executable
exe:	driver.cpp lib.o
	${CXX} ${CXXFLAGS} driver.cpp lib.o -o exe

#--
Compile sources
lib.o:	lib.cpp lib.h
	${CXX} ${CXXFLAGS} -c lib.cpp -o lib.o

Note that CXX and CXXFLAGS are just local variables that define our compiler, g++, and the flags
we'd like to set for it to use. Later, within this makefile, we can use them with the ${VARNAME}
syntax. This lets us define things like filepaths, flags, and other lines we reuse frequently within our
makefile.

So, the ${CXX} ${CXXFLAGS} -c lib.cpp -o lib.o line is equivalent to g++ -g -Wall -c lib.cpp -o lib.o - In this
case, we add the -c argument to tell g++ to only compile and output object files without linking
and building an executable.

make clean will remove all previous build files, make will recompile our project given the sources
have been updated. Make will not recompile sources that are not modified or dependent on
modified files.

For a more portable makefile, feel free to use the template below, and just replacce the variables
with whatever is relevant to your project.

#--
Clean last build
clean:
	rm -f *.o exe

CC = cc

FLAGS = -g -Wall

SRC = source.c mylib-source.c

LINK_TARGET = ls3

REBUILDABLES = $(LINK_TARGET)

Build the example
###
############

all: $(LINK_TARGET)

$(LINK_TARGET): $(SRC)
	${CC} $(FLAGS) $^ -o $@

Clean previous builds

Our example project will have the following file structure -

This is a simple format and useful for learning CMake, once you have this working you can
reorganize it as needed or follow a more in-depth tutorial elsewhere, this is only an example of a
simple 'hello world program', so we won't need to create any extra subdirectories.

Within the root directory we can setup our project by defining the relevant subdirectories and
cmake options, see the CMakeLists.txt file below

###
############

clean:
	rm -f $(REBUILDABLES)

CMake

some/dir/project/
├── src
│ ├── CMakeLists.txt
│ ├── header.h
│ ├── lib-test.cpp
│ ├── one.cpp
│ └── two.cpp
└── CMakeLists.txt

###
#############
A basic example of building an executable with CMake and linking libraries
Legal : All content (c) 2020 Shaun Reed, all rights reserved.
Author : Shaun Reed
###
#############
project/CMakeLists.txt

Project setup
cmake_minimum_required(VERSION 2.8)
Here, we name our project
project(hello-world CXX)

Now, from within the project/src/ directory, we create the following CMakeLists.txt to build our
libraries and executable -

Now, assuming all the source files configured with CMake above are present and valid, we can run
the following commands to build and compile our project.

include_directories(${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR})

Testing
An example of how an option could create multiple build paths
option(CMAKE_FIRST_TEST "Should we build our test application?" ON)
if(CMAKE_FIRST_TEST)
	# Since this is set to ON, we add the subdirectory for our source code
	# Be sure this reflects the folder name containing the next CMakeLists to further direct cmake
 add_subdirectory(src)
endif()

###
#############
About : Building an executable with CMake and linking custom libraries
Legal : All content (c) 2020 Shaun Reed, all rights reserved.
Author : Shaun Reed
###
#############
project/src/CMakeLists.txt

Creating executables
set(FIRST_EXECUTABLE_CMAKE_SOURCES one.cpp)
add_executable(one ${FIRST_EXECUTABLE_CMAKE_SOURCES})

set(SECOND_EXECUTABLE_CMAKE_SOURCES two.cpp)
add_executable(two ${SECOND_EXECUTABLE_CMAKE_SOURCES})

#Creating libraries
set(FIRST_STATIC_LIBRARY lib-test.cpp)
add_library(TestLibrary STATIC ${FIRST_STATIC_LIBRARY})

#Linking libraries to executables
target_link_libraries(one TestLibrary)
target_link_libraries(two TestLibrary)

That's it! Running the commands above ensure that our build files output won't clutter up our
project. First, we create a new directory to build into, then we move inside it and run cmake .. - this
tells cmake to run on the previous directory and as a result outputs the build files into our current
directory. Then, we can cmake --build . to build the files cmake created, which outputs and
executables defined in our project.

mkdir build
cd build
cmake .. && cmake --build .

Revision #8
Created 28 February 2020 23:04:17 by Shaun Reed
Updated 2 March 2021 17:59:52 by Shaun Reed

