Classes

Encapsulation is a concept that is used to protect member variables and ensure that the object is
always in a certain state.

Inheritance With Access Specifiers

When creating classes in C++ we should use the access specifier below that best fits our
scenario. By default, when defining a class, all members are private unless otherwise specified. In
contrast, when we define a struct, all members are public unless otherwise specified. This is the
only difference between a class and a struct in C++, and all other concepts are interchangable
between the two. Both can have member functions, variables, friends, destructors, constructors,

etc.

class Test {
Oint w; // W is private in this context
public:
[int x;[JJ/ X is accessible from outside or inside of the class
protected:
dint y;[J/ Y is accessible from within the class, by members of the same class, and any derived classes
private:

Oint z;[J/ Z is only accessible from within the class or by members of the same class

I

struct Test {
dint w; // W is public in this context
public:
[int x;[J/ X is accessible from outside or inside of the class
protected:
Oint y;[J/ Y is accessible from within the class, by members of the same class, and any derived classes
private:

fint z;J// Z is only accessible from within the class or by members of the same class

I

When using inheritance access specifiers we should pay attention to how member access is
impacted. Consider the code below, where we notice a change in the way we access public and
protected members of the base class, A. In main, we try to access some of these members and
show which ones we can and cannot access. In each inheriting class, we define new public
members that access private or protected members to show that we have the ability to do so

through inheritance, but only within the scope of the class or member definitions.

#include <iostream>

class A {
// Private is the default access modifier within classes in c++

int private_y; // This member will never be accessible from any derived class

public:

A() {}

/l Because the destructor was declared virtual, every deriving class will call this destructor in sequence when
being destroyed

/1 So for class PublicA; ~PublicA() -> ~A() is the order destructors will be called when leaving scope...

// or deleteing the object on the heap

virtual ~A() { std::cout << "Deleting A\n";};

int pub_x;

protected:

int protected_x;

private:
int private_x; // This member will never be accessible from any derived class

}

class PublicA : public A {
public:
~PublicA() {std::cout << "Deleting PublicA\n";};

int a = pub_x; // In this context, pub_x is protected
int b = protected_x; // In this context, protected_x is protected

}

class ProtectedA : protected A {
public:
~ProtectedA() {std::cout << "Deleting ProtectedA\n";};

int a = pub_x; // In this context, pub_x is protected
int b = protected_x; // In this context, protected_x is protected

I

class PrivateA : private A {
public:
~PrivateA() {std::cout << "Deleting PrivateA\n";};

int a = pub_x; // In this context, pub_x is private
int b = protected_x; // In this context, protected_x is private

I

int main (int const argc, char const * argv[]) {
/] Test destructor for base class A
A * baseA = new A; // Allocate A on the heap
delete baseA; // Free (delete) A from the heap

PublicA publicA;
publicA.pub_x = 5; // Valid, since pub_x, a, and b are all public

/I publicA.protected_x = 5; // Error! protected_x is protected in this context

ProtectedA protectedA;
/I protectedA.pub_x = 5; // Error! pub_x is protected in this context

/I protectedA.protected x = 5; // Error! protected x is protected in this context

PrivateA privateA;
/I privateA.pub_x = 5; // Error! pub_x is private in this context

/I privateA.protected_x = 5; // Error! protected_x is private in this context

// Destructor called for each object on the stack at exit
// Note: Since these are on the stack, they will be destroyed in reverse order

}

In summary, this chart helps to describe the various combinations and results between base class
access identifiers and their derived class's inheritance access specifier.

The resulting

access inside

the subclass
15:

When the When the
component 1s class 1s

declared as: mherited as:

protected
hone

protected

protected protected protected
I none

const member functions that return bool can be referred to as predicates

class Test {
public:
[bool empty() const;[J// empty() is a predicate in this context

I

Multiple-Inheritance is when a class inherits from more than one parent object or class.

Abstract Classes

An abstract class is one that cannot be instantiated without first being inherited from. This means
that by itself an abstract class can only be used as a base class for further implementation. An
abstract class may not be multiple-inherited, but they may contain state values (member
variables), and/or implementation (methods). Abstract classes can be inherited without
implementing the abastract methods, though such a derived class is abstract itself.

An example of an abstract classs Animal that uses its own constructor. Notice that derived classes
Human and Dog each have specific constructors with respect to their parent class, Animal . The use
of the virtual keyword in defining pure virtual functions makes this an abstract class, where
the implementation of speak is definined for each derived class (Human , and Dog, in this case) -

#include <iostream>

class Animal {
public:
/I A constructor the AbstractClass depends on in order to be instantiated

Animal(std::string name_) : name(name_) {};

https://knoats.com/uploads/images/gallery/2021-02/image-1612556828677.png

// Implementation the AbstractClass takes with when derived from
void showName() {
std::cout << "Name: " << name << std::endl;

}

// A pure virtual function, required to be implemented by deriving classes
virtual void speak() = 0; //...() = 0; required to be considered pure virtual
// The declaration above makes this class abstract; We need to define speak() before instantiating

// The class can be instatiated by deriving from this base class, and instantiating the derived class

protected:
/] Protected member allows deriving classes to inherit while acting as private
std::string name;

}

class Human : public Animal {
public:
// A constructor for the Human class with respect to it's base class (Animal)

Human(std::string name_) : Animal(name_) {};

/] speak() is defined for all Humans
void speak() {
std::cout << name << ": Hello'\n";
}
b

class Dog : public Animal {

public:
/I A constructor for the "Dog" class with an additional unique parameter
// Must still respect it's base class constructor parameter, and pass to Animal's ctor
Dog(std::string name_, std::string sound_="Bark!")

: Animal(name_), sound(sound_) {};

// speak() is defined for all Dogs
void speak() {
std::cout << name << ": " << sound << std::endl;

}

private:

// Note: The “sound” value could not be inherited further

std::string sound;

I

int main (int const argc, char const * argv[]) {
Human h("Shaun");

h.speak();

Dog d("Spot", "Bark!");
d.speak();

Dog f("Fluffy", "Yap!");
f.speak();
}

Abstract class with no pure virtual member functions -

#include <iostream>

/**/

// KeyData struct to hold data related to key ciphers
struct KeyData {
explicit KeyData(std::string key) : keyWord_(std::move(key)) {};
explicit KeyData() : keyWord_(GetKey()) {};
/] Pure virtual dtor to make abstract class despite no pure virtual members
/I + This works, because a base class should have a virtual dtor anyway

virtual ~KeyData() = 0;

/I Allows getting keyWord when using KeyData default ctor
static std::string GetKey()
{

std::string key;

std::cout << "Enter the keyword: ";

std::getline(std::cin, key);

std::cout << "Keyword entered: \"" << key << "\"\n";

return key;

protected:
std::string keyWord_;
IS

// Definition of pure virtual dtor (required)

KeyData::~KeyData() {}

Interfaces

An interface has no implementation, and contains only a virtual destructor and pure virtual
functions. virtual destructors ensure that when an interface is destroyed, the correct destructors
will be called down the inheritance hierarchy. Interfaces have no state or implementation, they
may be multiple-inherited.

// TODO: Example of an interface

Constructors and Resource Management

When dealing with dynamic memory allocation both operators new or delete are aware of
constructors and destructors. In contrast, malloc and free are not aware of class constructors or
destructors.

A deep copy is when we create or allocate new memory addresses and assign the values at these
addresses to match that of an existing object. See the example below, where A(A & rhs)
implements a deep-copy of the rhs object. In the examples below, we also take advantage of
C++11's range-based-for by implementing begin() and end members that return an iterator (
int *) to the beginning and end of the dynamic array.

#include <iostream>

class A {
// Private is the default access modifier within classes in c++

int private_y; // This member will never be accessible from any derived class

public:
/I ctor
A(int size, int value)
: size_(size), intArray_(new int[size]) {
for (auto &e : *this) e = value;

IE

// Copy ctor implementing a deep-copy of rhs

A(A & rhs) :size_(rhs.size_), intArray_(new int[size_]) {
std::copy(&rhs.intArray _[0], &rhs.intArray_[size_], intArray_);

}

// dtor of base class with dynamic member is virtual to handle destruction
~AQ) {

std::cout << "Deleting A\n";

delete [] intArray_;
}

// Assignment operator utilizes copy ctor to create local copy
A & operator=(A rhs) {

std::swap(intArray_, rhs.intArray);

std::swap(size_, rhs.size_);

}

// Implementing begin and end for use with objects derived from this class
int * begin() { return &intArray [0];};

int * end() { return &intArray_[size 1;};

void print() {
for (auto e : *this) {
std::cout << e << std::endl;
}
std::cout << std::endl;

}

protected:
int size_;
int * intArray_; // Dynamic memory requires defintition of ctor, dtor, and op=

h

int main (int const argc, char const * argv[]) {
/] Test destructor for base class A
A * baseA = new A(5, 1);
baseA->print();

delete baseA;

A shallow copy is when we create a copy of an object using references to the original location of
the data, as in the example below

Shallow Copy

length - 14 length : 14
height - 16 height - 16
* breadth : * breadth :
B1 B2
12 £ -

memory byte

#include <iostream>

class A {
// Private is the default access modifier within classes in c++

int private_y; // This member will never be accessible from any derived class

public:
// ctor
A(int size, int value)
: size_(size), intArray_(new int[size]) {
for (auto &e : *this) e = value;

}

// Copy ctor implementing a shallow-copy of rhs

A(A & rhs) :size_{rhs.size_}, intArray_{rhs.intArray_} {};

// Warning: If this object is ever used to initialize another, we will face an error on destruction
// Because we created a shallow-copy, we cannot delete the dynamic allocation without corrupting another
object
~A() {
std::cout << "Deleting A\n"; //
delete [] intArray_; // Error! Double free detected; Since we created a shallow copy in dynamic memory

}

https://knoats.com/uploads/images/gallery/2021-02/image-1612561721331.png

// Assignment operator utilizes copy ctor to create local copy
A & operator=(A rhs) {

std::swap(intArray_, rhs.intArray);

std::swap(size_, rhs.size_);

}

// Implementing begin and end for use with objects derived from this class
int *begin() { return &intArray_[0];};

int *end() { return &intArray_[size_1;};

void set(int value) {
for (int &e : *this) e = value;

}

void print() {
for (auto e : *this) {
std::cout << e << std::endl;
}
std::cout << std::endl;

}

protected:
int size_;
int * intArray_; // Dynamic memory requires defintition of ctor, dtor, and op=

}

int main (int const argc, char const * argv[]) {
A * baseA = new A(5, 1);
baseA->print();

A b(*baseA); //
b.print();

b.set(5); // Since the class uses a shallow copy, the changes are refelcted within both objects

/] baseA and b both point to the same location in memory for intArray_
baseA->print();
b.print();

A c(b);
c.print();

c.set(10); // Since the class uses a shallow copy, the changes are refelcted within all objects

baseA->print();
b.print();
c.print();

delete baseA,;

}

A conversion constructor is a constructor with a single parameter that converts the argument at
invocation to the type of the object. A constructor with multiple parameters is considered implicit if
all but one parameter provide default values. For example, consider the code below

Implicit conversion ctors can cause trouble w/ function overloading through unintended type
conversions. Below, we see examples of applying explicit to our constructors in class B, and
compare the results to a similar class A that did not. See the main function for the final test and
comparisons between the classes, then check the definitions to see why.

#include <iostream>

class A {
public:
// No explicit declaration allows implicit usage, converting to class type
A0 {}:
A(int val) : x(val), y('~") {};
A(char character, int value = 5) : y(character), x(value) {};

~A() {};

void show() {
std::cout << "x: " << x << std::endl;
std::cout << "y: " <<y << "\n\n";

}

int x;

chary;

class B {
public:

// Declaring constructors explicit forces more strict usage

explicit B() {};
explicit B(int val) : x(val), y('~") {};
explicit B(char character, int value = 5) : y(character), x(value) {};

~B() {};

void show() {
std::cout << "x: " << x << std::endl;
std::cout << "y: " <<y << "\n\n";

}

int x;

chary;

int main (int const argc, char const * argv[]) {
/1 All of the below is valid for class A, since we did not declare destructors explicit
Aa=10;
A al(10);
A a2 = {10};
Aa3 ='c}
A ad('c');
Aa5{'c'};
A ab6('c’, 10);
Aa7{'c', 10};
A a8 = {'c', 10};
A a9 = (A)10;
A al0 = (A)'x';
Aall = A('x");
A al2 = A('x', 10);
Aal3 = A{'x'};
A ald = A{'x', 10};

// For B, since we declared constructor explicit...
//B b = 5; /] Error! Implicit type conversion not allowed with explict ctor
B b1(5);
//IB b2 = {5}, // Error! Implicit type conversion not allowed with explict ctor
//B b3 = 'x'; /] Error! Implicit type conversion not allowed with explict ctor
B b4('x");
//B b5 = {'x'}; // Error! Implicit type conversion not allowed with explict ctor

B bo6('x', 5);

B b7{'x', 5};
//IB b8 = {'x', 5}, // Error! Implicit type conversion not allowed with explict ctor

B b9 = (B)5;

B b10 = (B)'x";

B bll = B('x');

B bl2 = B('x', 5);

B bl3 = B{'x'};

B bl4 = B{'x', 5};

Declaring static const member variables -

// SomeClass.hpp

class SomeClass {

public:
CarFactory(std::string name, int number):
[IIsomeName(location), someNumber(number) {}
~Class(){}

private:
std::string someName;
int someNumber;
const std::array<std::string, 4> someArray;

I

and in a seperate, source file -

// SomeClass.cpp

const std::array<std::string, 4>

SomecClass::someArray({"Thingl", "Thing2", "Thing3", "Thing4"});

If you want a member variable that is an iterator of this array -

class SomeClass {

public:
CarFactory(std::string name, int number):
[IlsomeName(location), someNumber(number) {}
~Class(){}

private:
std::string someName;

int someNumber;

const std::array<std::string, 4> someArray;
decltype(someArray)::iterator arraylter = someArray.begin();

I

Operator Oveloading

Overloading the ostream operator << to allow printing an object directly to stdout for Person
objects.

std::ostream & operator<<(std::ostream & o, const Person & a) {
0 << "first name=" << a.get first name() << ",last name=" << a.get_last name();
return o;

}

Revision #14
Created 6 February 2021 02:42:53 by Shaun Reed
Updated 8 January 2022 00:51:33 by Shaun Reed

