
Below are some of the useful methods and objects I found in documentation for the C++
Concurrency Support Library. This is of course not an exhaustive list, and only covers what I've
used in the examples later on this page.

std::mutex is a C++11 object which offers mutually exclusive ownership over shared resources
within a C++ program. The object is not directly associated with the shared resources via
construction or any other initialization, but instead the object is used to block program execution
should another thread want to step into a block of code that would attempt to modify a resource
that is currently in use elsewhere.

Mutex locks provide many functions, and after instatiation we can use these functions to enforce
ownership of shared resources.

Multithreading

C++ Concurrency Support

#include <chrono>
#include <iostream>
#include <mutex>
#include <thread>

int main(const int argc, const char * argv[]) {
 std::cout << "main() thread id: " << std::this_thread::get_id() << std::endl;

 static std::mutex mtx_A, mtx_B;

 std::thread thread_A([]()->void {
 mtx_A.lock(); // Call mutex member function std::mutex::lock()
 std::cout << std::this_thread::get_id() << " thread_A: Lock A\n";
 std::this_thread::sleep_for(std::chrono::seconds(3));
 mtx_A.unlock(); // Call mutex member function std::mutex::unlock()
 std::cout << std::this_thread::get_id() << " thread_A: Unlock A\n";
 });

 std::thread thread_B([]()->void {

https://en.cppreference.com/w/cpp/thread
https://en.cppreference.com/w/cpp/thread
https://en.cppreference.com/w/cpp/thread/mutex

The output of this example should show the general idea. If you run this code, you will notice one
thread takes ownership, waits a few seconds, releases the object, and then the same is repeated
for the next thread.

You might notice my use of the std::this_thread namespace, specifically std::this_thread::get_id()
and std::this_thread::sleep_for().I also use the std::chrono library often to define time periods for
the program to wait. For writing examples and testing multithreaded functionality of C++, these
methods will prove very useful, but keep in mind they are just to support examples - you typically
wouldn't want your program to wait for several seconds, and thus many of these examples can be
'fixed' by removing these methods. For instance, the livelock example on this page often results in
no livelock at all if I hadn't intentionally synchronized the iteration of loops within the opposing
threads. Sometimes you may see a livelock occur in that example naturally, but more often one
thread executes at a slightly different time, which breaks from the livelock and the program exits
normally. The examples serve as proof of concept, and not real world problems or scenarios.

std::lock is a function available in C++11 which handles the locking of N mutex objects, avoiding
the case of deadlock when any one of them is unavailable. This means that if any one of the mutex
objects passed to the call to std::lock , the program execution will be blocked until the resource is
available. When it becomes available, the resources are locked and execution continues.

std::try_lock is a function available in C++11 which is similar to std::lock in that is handles locking
N objects for us and avoiding deadlock. The major difference here is what you would expect, the

 std::this_thread::sleep_for(std::chrono::seconds(1));
 mtx_A.lock();
 std::this_thread::sleep_for(std::chrono::milliseconds(500));
 std::cout << std::this_thread::get_id() << " thread_B: Lock A\n";
 std::this_thread::sleep_for(std::chrono::seconds(3));
 mtx_A.unlock();
 std::cout << std::this_thread::get_id() << " thread_B: Unlock A\n";
 });

 thread_A.join();
 thread_B.join();
 return 0;
}

main() thread id: 140533678282560
140533678278400 thread_A: Lock A
140533678278400 thread_A: Unlock A
140533669885696 thread_B: Lock A
140533669885696 thread_B: Unlock A

https://en.cppreference.com/w/cpp/thread/get_id
https://en.cppreference.com/w/cpp/thread/sleep_for
https://en.cppreference.com/w/cpp/chrono
https://en.cppreference.com/w/cpp/thread/lock
https://en.cppreference.com/w/cpp/thread/try_lock

return value. This function returns -1 if the resources have been successfully locked, and 0 if not.
This means it can be used to programmatically react to resources that are currently unavailable.

RAII: Resource Acquisition Is Initialization descirbes the implementation of certain objects in C++
which encapsulate the initialization and deconstruction of required resources which may be shared
or unavailable at any point in time. There are many examples of objects that follow the RAII
concept in C++ concurrency libraries, listed below are only a few of these. RAII applies to heap
memory management, which is a much more common practice which programmers of all skill
levels would already be familiar with.

std::lock_guard is a C++11 object useful for managing a single mutex lock. The lock_guard object
has a constructor which supports a single mutex as an argument, and on construction this object
will attempt to lock the mutex, obtaining ownership of it. If the mutex is already owned by another
object, the thread or program execution will be blocked at this call and will not proceed until the
resource has been released by the current owning object. When the program leaves the scope of
an owning lock_guard object, the mutex is automatically released - we do not need to remember to
call unlock or any similar function.

std::scoped_lock is a C++17 object useful for managing N mutex locks, which means scoped_lock
has a constructor that supports N arguments where each is a mutex we want to obtain ownership
of. A caveat to this object is that the constructor also supports 0 arguments, which means the
programmer can construct a scoped_lock that doesn't ever lock a single mutex. The compiler will
not complain, whereas with lock_guard the compiler will reject any attempt to construct the object
without providing a mutex to lock. Similar to lock_guard , when the program leaves the scope of a
scoped_lock object, it will automatically call unlock on all mutex locks it has ownership of.

std::unique_lock provides a C++11 method of deferred mutex locking, which supports constructing
locks without requiring the resource to be immediately available, using lock tags such as
std::defer_lock. Notably, unique_lock is used in conjuction with std::condition_variable , which provides
sychronization support via notifications for blocked threads.

std::condition_variable is used alongside of unique_lock , where there is a shared value that is
modified to to signal the unblocking of a previously blocked thread. This is useful for synchronizing
events or jobs to continue processing only once the program has reached a valid state. An example
of using this method of synchronization can be seen in the code below.

/*##
############
Author: Shaun Reed
Legal: All Content (c) 2022 Shaun Reed, all rights reserved
About: An example of condition_variables in multithreaded C++
##
Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0

https://en.cppreference.com/w/cpp/language/raii
https://en.cppreference.com/w/cpp/thread/lock_guard
https://en.cppreference.com/w/cpp/thread/scoped_lock
https://en.cppreference.com/w/cpp/thread/unique_lock
https://en.cppreference.com/w/cpp/thread/lock_tag
https://en.cppreference.com/w/cpp/thread/condition_variable

###
#############
*/

#include <chrono>
#include <condition_variable>
#include <iostream>
#include <mutex>
#include <thread>

static std::mutex mtx;
std::condition_variable cv;
bool processing = false;

// Starts a job that waits for kick-off from main
// + When job finishes, handoff result back to main via processing bool
void job(int32_t & shared) {
 std::unique_lock uniqueLock(mtx);
 cv.wait(uniqueLock, []()->bool {return processing;});
 std::cout << std::this_thread::get_id()
 << " thread_A: Initial value of shared = " << shared << std::endl;
 while (shared < INT32_MAX) {
 shared++;
 }
 // We're no longer processing data
 processing = false;
 std::cout << std::this_thread::get_id()
 << " thread_A: Done working." << std::endl;
 uniqueLock.unlock(); // Important! Unlock uniqueLock before we notify
 // Notify main that we've finished, so it can proceed
 cv.notify_one();
}

int main(const int argc, const char * argv[]) {
 std::cout << "main() thread id: " << std::this_thread::get_id() << std::endl;

 int32_t share = 0;
 std::thread thread_A(job, std::ref(share));

 mtx.lock();

The output of this program shows that the value of share in the main function is what we would
expect upon the unblocking of thread_A . Since this value was passed to the threads job using
std::ref , it is a reference to the same value and the modifications made by thread_A are seen in
main as well.

std::basic_osyncstream provides a C++20 way to synchronize outputs to a shared stream, which
could be constructed with std::basic_osyncstream out(std::cout); and use directly as if it were std::cout .
Unfortunately many compilers don't support this yet, but worth mentioning. See C++ compiler
support for more up to date information on compiler support in regards to more modern C++
versions.

For now, these are all the methods and objects I'll use in the examples below, but there is surely
always more to learn and I will return to update this page in the future as I improve upon or learn
new multithreading techniques and practices in C++.

 std::this_thread::sleep_for(std::chrono::seconds(3));
 share = INT32_MAX / 2;
 processing = true;
 mtx.unlock();
 // Notify thread_A that its work can begin
 cv.notify_one();

 // Wait until thread_A finishes its work
 std::unique_lock uniqueLock(mtx);
 // Block execution until we are not processing
 cv.wait(uniqueLock, []()->bool { return !processing;});
 std::cout << std::this_thread::get_id() << " main(): final value of shared = "
 << share << std::endl;
 thread_A.join();

 return 0;
}

main() thread id: 139826095839040
139826095834880 thread_A: Initial value of shared = 1073741823
139826095834880 thread_A: Done working.
139826095839040 main(): final value of shared = 2147483647

Process Lifetime

https://en.cppreference.com/w/cpp/io/basic_osyncstream
https://en.cppreference.com/w/cpp/compiler_support#cpp20
https://en.cppreference.com/w/cpp/compiler_support#cpp20

Threads should not be confused with processes. A process can own several threads, while any
given thread can only be owned by a single process. In general, the lifetime of a process is outlined
below, where New-(Admitted)->Ready describes the transisition between the New and Ready process
states following the Admitted signal from the OS that created the thread.

New
New-(Admitted)->Ready

Ready
Ready-(Dispatch)->Running

Running
Running-(Interrupt)->Ready
Running-(Wait for I/O or Event)->Watiting
Running-(Exit)->Terminated

Waiting
Waiting-(I/O or Event Completed)->Ready

Terminated

When we call std::thread and construct a new thread, we request a new thread from the OS, which
is supplied threads by the kernel, which manages the resources available to us by our hardware.

In general, operating systems have the following states for threads that they're managing.

Creation - Thread has been created but not allocated any resources yet
Ready - The thread has resources available to it, and is ready to be assigned some work
Running - The thread is running a job, which may result in any of the below states, which
will subsequently return to the Ready state, which transitions to a Running thread.

Waiting - The thread is waiting for some event or signal to return to the Ready state
Delayed - The thread has been delayed, usually to support more important
processing happening on other threads
Blocked - The thread requires a resource which is currently in use by another thread,
and is blocked until this resource is made available

Finished - The thread is finished, and is joined back into the owning process

These are the general steps taken by processses, including the operating system, when threads
are created, used, and destroyed. To destroy a thread we must first join it back into the owning
process which releases the resources back to the kernel for allocating to other threads.

The sections below contain programs that show examples for various problems and solutions in
multithreaded applications. These are just general examples and not real world problems, so many
of the problems were intentionally created to showcase a situation that can occur. If only interested

Thread Lifetime

Examples

in the source code, check out my Git repository shaunrd0/klips where I practice general
programming.

The following program is an example of the problem() and solution() to race conditions in C++. This
is a basic example, and just shows what can happen if two or more threads happen to access the
same variable simultaneously. Since the value of x is shared, and this value is incremented within
a for loop by all 5 threads, the value of x can be the same when the increment is applied in some
undefined number of threads.

This means that each time we run the program, the output of problem() will vary from 1000000-
5000000. This variation in final output is due to the undefined number of threads that
simultaneously access x which incrementing it within the loop. In contrast, each time we run the
solution() , the value will always be the expected output of 5000000, because we have utilized the
concurrency features of C++ appropriately.

Race Conditions

/*##
############
Author: Shaun Reed
Legal: All Content (c) 2022 Shaun Reed, all rights reserved
About: An example of a race condition problem and solution
##
Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0
###
#############
*/

#include <iostream>
#include <thread>
#include <vector>
#include <mutex>

void problem() {
 std::vector<std::thread> threads;
 const uint8_t thread_count = 5;
 // With no mutex lock, the final value will vary in the range 1000000-5000000
 // + Threads will modify x simultaneously, so some iterations will be lost
 // + x will have same initial value entering this loop on different threads
 uint32_t x = 0;
 for (uint8_t i = 0; i < thread_count; i++) {
 threads.emplace_back([&x](){

https://git.shaunreed.com/shaunrd0/klips/src/branch/master/cpp/multithreading

 for (uint32_t i = 0; i < 1000000; i++) {
 x = x + 1;
 };
 });
 }
 // Ensure the function doesn't continue until all threads are finished
 // + There's no issue here, the issue is in how `x` is accessed above
 for (auto &thread : threads) thread.join();
 std::cout << x << std::endl;
}

// Create mutex lock to prevent threads from modifying same value simultaneously
static std::mutex mtx;
void solution() {
 std::vector<std::thread> threads;
 const uint8_t thread_count = 5;
 uint32_t x = 0;
 for (uint8_t i = 0; i < thread_count; i++) {
 threads.emplace_back([&x](){
 // The first thread that arrives here will 'lock' other threads from passing
 // + Once first thread finishes, the next thread will resume
 // + This process repeats until all threads finish
 std::lock_guard<std::mutex> lock(mtx);
 for (uint32_t i = 0; i < 1000000; i++) {
 x = x + 1;
 };
 });
 }
 // Ensure the function doesn't continue until all threads are finished
 for (auto &thread : threads) thread.join();
 std::cout << x << std::endl;
}

int main(const int argc, const char * argv[]) {
 // Result will vary from 1000000-5000000
 problem();

 // Result will always be 5000000
 solution();
 return 0;

The output of this program is

Deadlocks occur when two threads lock a shared resource from each other. In the example below,
thread_A has locked mtx_A , and it wants to lock mtx_B . This is not possible, because thread_B has
already locked mtx_B , and is now waiting to lock mtx_A . Neither of these locks will ever pass,
because the threads both require a common resource to continue.

For the sake of the example, I provide a way out of the deadlock situation within the problem()
function. Note that if it were not for this, the program would simply never finish execution. It would
wait forever, as neither resource would ever become available to the opposing thread. I have split
this code between several blocks with short explanations of each problem / solution, but all code
within this section is within the same program. The full example can be found in my general
programming practice repository, klips.

}

1374956
5000000

Deadlocks

/*##
############
Author: Shaun Reed
Legal: All Content (c) 2022 Shaun Reed, all rights reserved
About: An example and solution for deadlocks in C++
##
Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0
###
#############
*/

#include <chrono>
#include <iostream>
#include <mutex>
#include <sstream>
#include <thread>

static std::mutex mtx_A, mtx_B, output;

// Helper function to output thread ID and string associated with mutex name

http://git.shaunreed.com/shaunrd0/klips

// + This must also be thread-safe, since we want threads to produce output
// + There is no bug or issue here; This is just in support of example output
void print_safe(const std::string & s) {
 std::scoped_lock<std::mutex> scopedLock(output);
 std::cout << s << std::endl;
}

// Helper function to convert std::thread::id to string
std::string id_string(const std::thread::id & id) {
 std::stringstream stream;
 stream << id;
 return stream.str();
}

// In the two threads within this function, we have a problem
// + The mutex locks are acquired in reverse order, so they collide
// + This is called a deadlock; The program will *never* finish
void problem() {
 std::thread thread_A([]()->void {
 mtx_A.lock();
 print_safe(id_string(std::this_thread::get_id()) + " thread_A: Locked A");
 std::this_thread::sleep_for(std::chrono::seconds(1));
 mtx_B.lock(); // We can't lock B! thread_B is using it
 // The program will never reach this point in execution; We are in deadlock
 print_safe(id_string(std::this_thread::get_id())
 + " thread_A: B has been unlocked, we can proceed!\n Locked B"
);
 std::this_thread::sleep_for(std::chrono::seconds(1));

 print_safe(id_string(std::this_thread::get_id())
 + " thread_A: Unlocking A, B..."
);
 mtx_A.unlock();
 mtx_B.unlock();
 });

 std::thread thread_B([]()->void {
 mtx_B.lock();
 print_safe(id_string(std::this_thread::get_id()) + " thread_B: Locked B");
 std::this_thread::sleep_for(std::chrono::seconds(1));

There are a few solutions we could use to work around this problem. We could use std::lock, which
is available in C++11. With this approach, we still need to remember to unlock each mutex, or else
we end up in a deadlock situation again. The only difference is that this time we caused it ourselves
by forgetting to unlock the resource instead of two threads with a conflict of interest.

 mtx_A.lock(); // We can't lock A! thread_A is using it
 // The program will never reach this point in execution; We are in deadlock
 print_safe(id_string(std::this_thread::get_id())
 + " thread_B: A has been unlocked, we can proceed!\n Locked A"
);
 std::this_thread::sleep_for(std::chrono::seconds(1));

 print_safe(id_string(std::this_thread::get_id())
 + " thread_B: Unlocking B, A..."
);
 mtx_B.unlock();
 mtx_A.unlock();
 });

 // This offers a way out of the deadlock, so we can proceed to the solution
 std::this_thread::sleep_for(std::chrono::seconds(2));
 char input;
 print_safe("\n"
 + id_string(std::this_thread::get_id())
 + " problem(): We are in a deadlock. \n"
 + " Enter y/Y to continue to the solution...\n"
);
 while (std::cin >> input) {
 if (input != 'Y' && input != 'y') continue;
 else break;
 }
 print_safe(id_string(std::this_thread::get_id())
 + " problem(): Unlocking A, B..."
);
 mtx_A.unlock();
 mtx_B.unlock();

 thread_A.join();
 thread_B.join();
}

https://en.cppreference.com/w/cpp/thread/lock

We could also use std::lock_guard, which is also available in C++11. The benefit to constructing
this object is that we are not required to remember to unlock either mutex. lock_guard has a
constructor which takes a single argument for one mutex to manage for us. This means we need
two lock_guard objects to work around this deadlock situation.

// std::lock will lock N mutex locks
// + If either is in use, execution will block until both are available to lock
void solution_A() {
 std::thread thread_A([]()->void {
 std::lock(mtx_A, mtx_B);
 print_safe(id_string(std::this_thread::get_id()) + ": Locked A, B");
 std::this_thread::sleep_for(std::chrono::seconds(1));

 print_safe(id_string(std::this_thread::get_id()) + ": Unlocking A, B...");
 mtx_A.unlock();
 mtx_B.unlock();
 });

 std::thread thread_B([]()->void {
 std::lock(mtx_B, mtx_A);
 print_safe(id_string(std::this_thread::get_id()) + ": Locked B, A");
 std::this_thread::sleep_for(std::chrono::seconds(1));

 print_safe(id_string(std::this_thread::get_id()) + ": Unlocking B, A...");
 mtx_B.unlock();
 mtx_A.unlock();
 });

 thread_A.join();
 thread_B.join();
}

// std::lock_guard is a C++11 object which can be constructed with 1 mutex
// + When the program leaves the scope of the guard, the mutex is unlocked
void solution_B() {
 std::thread thread_A([]()->void {
 // lock_guard will handle unlocking when program leaves this scope
 std::lock_guard<std::mutex> guard_A(mtx_A), guard_B(mtx_B);
 print_safe(id_string(std::this_thread::get_id()) + ": Locked A, B");
 std::this_thread::sleep_for(std::chrono::seconds(1));

https://en.cppreference.com/w/cpp/thread/lock_guard

A third and final example of a solution to deadlocks is using the std::scoped_lock object available in
C++17. This object has a constructor that takes N arguments, each one being a mutex we want
the object to manage for us. This means for N mutex locks, we only need one scoped_lock object.
When the program leaves the scope of this object, all mutex locks will be unlocked for us, so we
don't need to remember to do this ourselves.

 print_safe(id_string(std::this_thread::get_id()) + ": Unlocking A, B...");
 // We don't need to explicitly unlock either mutex
 });

 std::thread thread_B([]()->void {
 std::lock_guard<std::mutex> guard_B(mtx_B), guard_A(mtx_A);
 print_safe(id_string(std::this_thread::get_id()) + ": Locked B, A");
 std::this_thread::sleep_for(std::chrono::seconds(1));

 print_safe(id_string(std::this_thread::get_id()) + ": Unlocking B, A...");
 // We don't need to explicitly unlock either mutex
 });

 thread_A.join();
 thread_B.join();
}

// std::scoped_lock is a C++17 object that can be constructed with N mutex
// + When the program leaves this scope, all N mutex will be unlocked
void solution_C() {
 std::thread thread_A([]()->void {
 // scoped_lock will handle unlocking when program leaves this scope
 std::scoped_lock scopedLock(mtx_A, mtx_B);
 print_safe(id_string(std::this_thread::get_id()) + ": Locked A, B");
 std::this_thread::sleep_for(std::chrono::seconds(1));

 print_safe(id_string(std::this_thread::get_id()) + ": Unlocking A, B...");
 // We don't need to explicitly unlock either mutex
 });

 std::thread thread_B([]()->void {
 std::scoped_lock scopedLock(mtx_B, mtx_A);
 print_safe(id_string(std::this_thread::get_id()) + ": Locked B, A");

https://en.cppreference.com/w/cpp/thread/scoped_lock

The output of this program is

 std::this_thread::sleep_for(std::chrono::seconds(1));

 print_safe(id_string(std::this_thread::get_id()) + ": Unlocking B, A...");
 // We don't need to explicitly unlock either mutex
 });

 thread_A.join();
 thread_B.join();
}

int main(const int argc, const char * argv[]) {
 std::cout << "main() thread id: " << std::this_thread::get_id() << std::endl;

 problem();

 print_safe("\nsolution_A, using std::lock\n");
 solution_A();

 print_safe("\nsolution_B, using std::lock_guard\n");
 solution_B();

 print_safe("\nsolution_C, using std::scoped_lock\n");
 solution_C();

 return 0;
}

main() thread id: 140625995487040
140625995482880 thread_A: Locked A
140625987090176 thread_B: Locked B

140625995487040 problem(): We are in a deadlock.
 Enter y/Y to continue to the solution...

y
140625995487040 problem(): Unlocking A, B...
140625995482880 thread_A: B has been unlocked, we can proceed!
 Locked B

All that said, why would one choose to use std::lock_guard over std::scoped_lock? If there is only a
need to lock a single resource, the use of scoped_lock just isn't necessary. An added benefit to
using lock_guard is it's availability in C++11, whereas scoped_lock isn't available until C++17. Also,
the constructor for scoped_lock can technically accept 0 arguments. This means that one can forget
to pass the mutex locks required for thread-safe code, and the compiler will happily accept their
code. By using lock_guard when possible, we enlist the compiler's help in avoiding a small oversight
in the use of scoped_lock .

A livelock occurs when thread_A has ownership of mtx_A , and thread_B has ownership of mtx_B .
Each thread attempts to lock the opposing mutex, and when the thread realizes the mutex is
already locked, they attempt to take corrective action and unlock their resource. The intention is to

140625987090176 thread_B: A has been unlocked, we can proceed!
 Locked A
140625995482880 thread_A: Unlocking A, B...
140625987090176 thread_B: Unlocking B, A...

solution_A, using std::lock

140625987090176: Locked A, B
140625987090176: Unlocking A, B...
140625995482880: Locked B, A
140625995482880: Unlocking B, A...

solution_B, using std::lock_guard

140625995482880: Locked A, B
140625995482880: Unlocking A, B...
140625987090176: Locked B, A
140625987090176: Unlocking B, A...

solution_C, using std::scoped_lock

140625987090176: Locked A, B
140625987090176: Unlocking A, B...
140625995482880: Locked B, A
140625995482880: Unlocking B, A...

Process finished with exit code 0

Livelocks

https://en.cppreference.com/w/cpp/thread/lock_guard
https://en.cppreference.com/w/cpp/thread/scoped_lock

free up the resource for the other thread so it can complete it's work, but in some cases the
threads continually lock and unlock their resources, running into the same problem each time.

This is a weird one to provide an example for, and I had to do some synchonization between the
loops in thread_A and thread_B to make the results consistent. The threads will only enter livelock
for 5 iterations, and then thread_B will give up, so the example can continue to show the solution.
This is kindof an odd case, since we have intentionally synchronized the loops to produce a livelock
situation, but I think the example shows the general idea.

/*##
############
Author: Shaun Reed
Legal: All Content (c) 2022 Shaun Reed, all rights reserved
About: An example and solution for livelocks in C++
##
Contact: shaunrd0@gmail.com | URL: www.shaunreed.com | GitHub: shaunrd0
###
#############
*/

#include <chrono>
#include <iostream>
#include <mutex>
#include <thread>
#include <vector>

static std::mutex mtx_A, mtx_B, output;

// Helper function to output thread ID and string associated with mutex name
// + This must also be thread-safe, since we want threads to produce output
// + There is no bug or issue here; This is just in support of example output
void print_safe(const std::string & s) {
 std::scoped_lock<std::mutex> scopedLock(output);
 std::cout << s << std::endl;
}

void problem() {
 // Construct a vector with 5 agreed-upon times to synchronize loops in threads
 typedef std::chrono::time_point<std::chrono::steady_clock,
 std::chrono::steady_clock::duration> time_point;
 std::vector<time_point> waitTime(6);

 for (uint8_t i = 0; i < 6; i++) {
 waitTime[i] = std::chrono::steady_clock::now()+std::chrono::seconds(1+i);
 }

 std::thread thread_A([waitTime]()->void {
 uint8_t count = 0; // Used to select time slot from waitTime vector
 bool done = false;
 while (!done) {
 count++;
 std::lock_guard l(mtx_A);
 std::cout << std::this_thread::get_id() << " thread_A: Lock A\n";
 // Wait until the next time slot to continue
 // + Helps to show example of livelock by ensuring B is not available
 std::this_thread::sleep_until(waitTime[count]);
 std::cout << std::this_thread::get_id() << " thread_A: Requesting B\n";
 if (mtx_B.try_lock()) {
 done = true;
 std::cout << std::this_thread::get_id()
 << " thread_A: Acquired locks for A, B! Done.\n";
 }
 else {
 std::cout << std::this_thread::get_id()
 << " thread_A: Can't lock B, unlocking A\n";
 }
 }
 mtx_B.unlock();
 });

 std::thread thread_B([waitTime]()->void {
 // As an example, enter livelock for only 5 iterations
 // + Also used to select time slot from waitTime vector
 uint8_t count = 0;
 bool done = false;
 while (!done && count < 5) {
 count++;
 std::lock_guard l(mtx_B);
 // Wait until the next time slot to continue
 // + Helps to show example of livelock by ensuring A is not available
 std::this_thread::sleep_until(waitTime[count]);
 if (mtx_A.try_lock()) {

 // The program will never reach this point in the code
 // + The only reason livelock ends is because count > 5
 done = true;
 }
 }
 });

 thread_A.join();
 thread_B.join();
}

// The solution below uses std::scoped_lock to avoid the livelock problem
void solution() {
 std::thread thread_A([]()->void {
 for (int i = 0; i < 5; i++) {
 // Increase wait time with i
 // + To encourage alternating lock ownership between threads
 std::this_thread::sleep_for(std::chrono::milliseconds(100 * i));
 std::scoped_lock l(mtx_A, mtx_B);
 std::cout << std::this_thread::get_id()
 << " thread_A: Acquired locks for A, B!" << std::endl;
 }
 });

 std::thread thread_B([]()->void {
 for (int i = 0; i < 5; i++) {
 std::this_thread::sleep_for(std::chrono::milliseconds(100 * i));
 std::scoped_lock l(mtx_B, mtx_A);
 std::cout << std::this_thread::get_id()
 << " thread_B: Acquired locks for B, A!" << std::endl;
 }
 });

 thread_A.join();
 thread_B.join();
}

int main(const int argc, const char * argv[]) {
 std::cout << "main() thread id: " << std::this_thread::get_id() << std::endl;

The output of this program shows A requesting B , realizing it can't, and then releasing it's
resource. What we can't see in this output is the activity of thread_B - this is just because it was
very vertical, and I thought the output from thread_A was enough to show as an example.

The solution output shows the threads alternating ownership of the mutex locks between
iterations.

 problem();

 std::cout << "\nSolution:\n\n";
 solution();

 return 0;
}

main() thread id: 140684728141632
140684728137472 thread_A: Lock A
140684728137472 thread_A: Requesting B
140684728137472 thread_A: Can't lock B, unlocking A
140684728137472 thread_A: Lock A
140684728137472 thread_A: Requesting B
140684728137472 thread_A: Can't lock B, unlocking A
140684728137472 thread_A: Lock A
140684728137472 thread_A: Requesting B
140684728137472 thread_A: Can't lock B, unlocking A
140684728137472 thread_A: Lock A
140684728137472 thread_A: Requesting B
140684728137472 thread_A: Can't lock B, unlocking A
140684728137472 thread_A: Lock A
140684728137472 thread_A: Requesting B
140684728137472 thread_A: Acquired locks for A, B! Done.

Solution:

140684728137472 thread_B: Acquired locks for B, A!
140684719744768 thread_A: Acquired locks for A, B!
140684728137472 thread_B: Acquired locks for B, A!
140684719744768 thread_A: Acquired locks for A, B!
140684728137472 thread_B: Acquired locks for B, A!
140684719744768 thread_A: Acquired locks for A, B!

Some other references that I found online while working on these examples.

approxion: lock_guard vs scoped_lock

bogotobogo: multithreaded C++

deathbytape - C++ threading

acodersjourney - 20 threading mistakes

zitoc - Process Lifecycle

140684728137472 thread_B: Acquired locks for B, A!
140684719744768 thread_A: Acquired locks for A, B!
140684728137472 thread_B: Acquired locks for B, A!
140684719744768 thread_A: Acquired locks for A, B!

References

Revision #11
Created 1 April 2022 23:19:59 by Shaun Reed
Updated 21 April 2022 14:02:06 by Shaun Reed

https://www.approxion.com/why-i-still-use-stdlock_guard/
https://www.bogotobogo.com/cplusplus/multithreaded.php
https://deathbytape.com/articles/2015/02/03/cpp-threading.html
https://www.acodersjourney.com/top-20-cplusplus-multithreading-mistakes/
https://zitoc.com/process-life-cycle/

