
Official Dockerfile Documentation
Docker Images Docs is also a good place to get information on using various basic images which
can be built off of.

Below, we define a Dockerfile within some exclusive directory on our system where we want to
work on our docker image. Create this file with any text editor, where the following commands are
possible in a CMD input format.

FROM defines the base image to build off of from a repository on dockerhub
LABEL
RUN defines a command to run in sequence as the Dockerfile is built.
SHELL Restarts into a given shell, seen below where we pass --login and -c parameters to bash
EXPOSE defines a port to expose on the container to the host VOLUME
USER
WORKDIR
ENTRYPOINT
ENV
ARG
COPY \

Dockerfile

Default repository is the same that is used when running `hexo init`
ARG REPO='https://github.com/hexojs/hexo-starter'
https://hub.docker.com/_/nginx as our base image to build off of
FROM nginx:latest
Otherwise provide one during build..
`docker build -t <TAG> . --build-params REPO='https/github.com/username/repo'
ARG REPO
LABEL maintainer='username@gmail.com'
Install additional packages we need
RUN apt-get update && apt-get -y upgrade && apt install -y curl vim
Grab NVM and restart shell to load commands into bash
RUN curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
SHELL ["/bin/bash", "--login", "-c"]
Install NVM stable version and hexo
RUN nvm install stable
RUN npm install -g hexo-cli
EXPOSE 8080

https://docs.docker.com/engine/reference/builder/
https://github.com/docker-library/docs
https://hub.docker.com/

In the Dockerfile above, I use ARG to define a default value REPO which represents the repository
to clone when building this docker image. In this case, the repository is the same that is cloned
automatically when running hexo init . Since we defined ARG REPO after the FROM command in the
dockerfile, it will be accessible for the entire build process, instead of being limited to FOR . If you
want to provide a different value for this when building the image, you can do so by using `docker
build -t . --build-params REPO=''

SHELL restarts our shell to load the nvm commands into bash so we can in the next step nvm install
stable . Otherwise, this command would fail saying that nvm did not exist.

To build a dockerfile into an image, run the following command, where -t is tagging the built
image with a tag in the preferred format of dockerhub-username/dockerhub-reponame:version

We can run docker images and see the following output displaying all the built docker images on our
machine

Now to start our newly built image, we run the following command

To check that our image is running, run docker container ls to see output similar to the below

To login to docker, we need to run docker login and follow the prompts, supplying our username and
password. On some systems, you could see the below error -

Building Docker Images

docker build -t username/nginx-hexo:0.1 .

Running Built Images

REPOSITORY TAG IMAGE ID CREATED SIZE
username/nginx-hexo 0.1 86325466e505 32 minutes ago 331MB

docker container run -d --name nginx-hexo \
username/nginx-hexo:0.1

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
7a74d968f0d2 username/nginx-hexo:0.1 "nginx -g 'daemon of…" 30 minutes ago Up 30 minutes
80/tcp, 8080/tcp nginx-hexo

Pushing Images to DockerHub

https://docs.docker.com/engine/reference/builder/#understand-how-arg-and-from-interact

To fix this, we run the following

After logging into docker on your machine, since we already properly tagged our image when we
built it with docker build -t <TAG> . above, we can simply docker push <TAG> . Below, we look up our
image's local ID and retag it to ensure this matches our DockerHub username and preferred image
name / tag. Then, we push the image to DockerHub, publicly. If you want this image to be private,
which it should be if unstable, you can do so by logging into dockerhub and modifying the
repository settings after making the first push.

Get the image ID -

Assign the image ID a new tag (This is the same as the old in this case) -

Push the docker image to DockerHub -

If you don't want to push to DockerHub for any reason, you can always just save you image locally
using docker save , and then reload it later either on the same machine or a new one by using
docker load .

Save the image

Reload the image

You should see the following output

error getting credentials - err: exit status 1, out: `GDBus.Error:org.freedesktop.DBus.Error.ServiceUnknown: The
name org.freedesktop.secrets was not provided by any .service files`

sudo apt install gnupg2 pass

docker images
username/nginx-hexo 0.1 86513686e505 32 minutes ago 331MB

docker tag 83213123e515 username/nginx-hexo:0.1

docker push username/nginx-hexo:0.1

Saving Images Locally

docker save username/nginx-hexo:0.1 > nginx-hexo.tar

docker load --input nginx-hexo.tar

https://hub.docker.com/

a333833f30f7: Loading layer
[==>] 59.4MB/59.4MB
68a235fa3cf2: Loading layer
[==>] 119.3kB/119.3kB
b402ba6c11cd: Loading layer
[==>] 135.7MB/135.7MB
3fc85c9d7bd6: Loading layer
[==>] 17.61MB/17.61MB
Loaded image: username/nginx-hexo:0.1

Revision #6
Created 26 May 2020 00:37:26 by Shaun Reed
Updated 18 December 2021 17:13:28 by Shaun Reed

