
Following the link below, GitLab provides a good refence for the many ways to deploy and
configure various portions of a self hosted GitLab instance. fo Official Ubuntu Installation
Instructions

GitLab offers two types of instances, SaaS and self-hosted. SaaS is their hosted gitlab.com instance
which you can sign up on an purchase different tiers. The second is a self-hosted environment with
limitations based on the license purchased.

Differences in SaaS GitLab versions

Support for CI tools and dashboards come with Bronze

Support for Conan, Maven, NPM come with Silver.

Support for major security features comes with Gold.

Differences in self-hosted GitLab versions

Its good to know that you can always upgrade your CE instance to EE just by installing the EE
packages ontop of the CE.

Its also good to know what would happen to your instance should your subscription expire if
considering a EE license

GitLab

Versions

SaaS

Self-hosted

Installation

https://about.gitlab.com/install/#ubuntu
https://about.gitlab.com/install/#ubuntu
https://gitlab.com
https://about.gitlab.com/pricing/gitlab-com/feature-comparison/
https://about.gitlab.com/pricing/self-managed/feature-comparison/
https://docs.gitlab.com/omnibus/update/#updating-community-edition-to-enterprise-edition
https://about.gitlab.com/pricing/licensing-faq/#what-happens-when-my-subscription-is-about-to-expire-or-has-expired

Ansible Role

Docker CE Image

Docker EE Image

GitLab uses their Omnibus GitLab package to group the services needed to host a GitLab instance
without creating confusing configuration scenarios.

GitLab can be hosted on a Pi which means you can do some tweaking to improve performance or
save some resources on your host. Some options would be splitting the DBs from the host and
reducing running processes. Both are described and documented in the link above.

Official Compose Documentation

Currently, the basic docker-compose.yml shown on the official documentation is seen below.

By default, docker will name this container by prefixing the web service name with pathname_
relevant to your current working directory. If you want to name this container add container_name:
name within the web layer of this docker-compose.yml

Docker Compose

web:
 image: 'gitlab/gitlab-ce:latest'
 restart: always
 hostname: 'gitlab.example.com'
 environment:
 GITLAB_OMNIBUS_CONFIG: |
 external_url 'https://gitlab.example.com'
 # Add any other gitlab.rb configuration here, each on its own line
 ports:
 - '80:80'
 - '443:443'
 - '22:22'
 volumes:
 - '$GITLAB_HOME/config:/etc/gitlab'
 - '$GITLAB_HOME/logs:/var/log/gitlab'
 - '$GITLAB_HOME/data:/var/opt/gitlab'

https://github.com/geerlingguy/ansible-role-gitlab
https://hub.docker.com/r/gitlab/gitlab-ce/
https://hub.docker.com/r/gitlab/gitlab-ee/
https://docs.gitlab.com/omnibus/README.html
https://docs.gitlab.com/omnibus/settings/rpi.html
https://docs.gitlab.com/omnibus/docker/#install-gitlab-using-docker-compose

We need to make sure to replace hostname and external_url with relevant URLs for our environment
or starting this container will fail.

hostname

The hostname must be in the format of the root domain domain.com - without the schema (http /
https) or port.

external_url

The external_url must be in the format of http://domain.com:8080 where 8080 is the port we are
serving the content to externally. If you are using the default port 80 , you can just use the
http://domain.com format.

This error is seen with docker start gitlab && docker logs -f gitlab when we have improperly set the
external_url variable within the root docker-compose.yml

GITLAB_HOME

We also need to ensure that we either replace the environment varialble $GITLAB_HOME or set it to
a value relevant to your environment. Otherwise, when starting this container Docker will not be
able to bind the volumes and we will not be able to modify the required configuration files within
them.

If you want to see what environment variables are set by default with the gitlab/gitlab-ce Docker
image, run the following command

For this image, we see the following output.

Required Modifications

Unexpected Error:

Chef::Exceptions::ValidationFailed: Property name's value http://myspace.com does not match regular
expression /^[\-[:alnum:]_:.]+$/

docker run gitlab/gitlab-ce env

PATH=/opt/gitlab/embedded/bin:/opt/gitlab/bin:/assets:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=0a37118aae33
LANG=C.UTF-8
TERM=xterm
HOME=/root

Since the Omnibus is a self-contained environment that has everything you need to host a GitLab,
the docker-compose.yml we configured above needs to only contain the single web service which
uses the gitlab/gitlab-ce Docker image. If you configure your hosts file as I did in the above /etc/hosts
example you can quickly deploy the entire service with the below docker-compose.yml

Serving Locally
Working on hosting this container on localhost ? Because DNS resolves locally on your host
first, you can override any URL within your /etc/hosts file by passing the below configuration,
which allows us to visit www.myspace.com within a web browser to see the content being
served locally.

127.0.0.1 localhost www.myspace.com myspace.com

The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

Starting the Services

web:
 image: 'gitlab/gitlab-ce:latest'
 container_name: gitlab
 restart: always
 hostname: 'myspace.com'
 environment:
 GITLAB_OMNIBUS_CONFIG: |
 external_url 'http://myspace.com'
 # Add any other gitlab.rb configuration here, each on its own line
 ports:
 - '80:80'
 - '443:443'
 - '22:22'
 volumes:
 - '/home/user/docker/gitlab/config:/etc/gitlab'

https://docs.gitlab.com/omnibus/

This simple configuration is meant for testing only and omits the environment variable
$GITLAB_HOME so that it is self-contained. That being said, all we need to do it run docker-compose up

-d && docker logs -f gitlab , and visit myspace.com in a web browser.

At first, you may see the default GitLab 502 page while the container is starting, but within a few
minutes you should be able to refresh the page and see the page below

This page is requesting for you to create a password for the root account. After you submit this
form you can then login to the GitLab with the username root and the relevant password
configured here.

Once logging in as root, we see the below landing page

A normal user account can be created through the normal registration process on the home page
of your instance. At this point we can already register a guest user, create a public repository,
clone it, then push new content.

Below, I'm logged in as a user in one window and root in the other. The Admin Area is a nice
landing page if you are looking to configure a new feature that your instance does not have yet, as
clicking on the ? next to any label will take you directly to the documentation to setup or modify
that feature.

 - '/home/user/docker/gitlab/logs:/var/log/gitlab'
 - '/home/user/docker/gitlab/data:/var/opt/gitlab'

You should not need to be running NGINX on your box locally.

https://www.knoats.com/uploads/images/gallery/2020-06/image-1592325694765.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1592325859170.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1592337734289.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1592337903805.png

Table Source

General hardware requirements can be found on the Official Hardware Requirements
Documentation which gives detailed specifications on resources needed for various configurations.

If you plan to configure your instance to support greater than 1,000 users, you'll want to refer to
the Official Reference Architectures Documentation.

Here, specifications are outlined for each component and service within the GitLab Omnibus that
needs hardware adjusted or expanded based on the number of users expected to be using your
instance.

For example, if you plan to use 10,000 users it would be much more expensive to support the
hardware versus running an instance with 500 users

Below, we can see the actual difference in memory usage on our host by running free -ht while the
container is running and after the container is stopped. This instance is running GitLab locally with
no NGINX proxy running on the host itself. At the time of this test, there were only two users signed
into the instance.

We should note that though the actual usage seen here is only 2.6GB , the basic requirement of
3.6GB for up to 500 users is still valid.

Resource Usage

Memory

CPU

https://www.knoats.com/uploads/images/gallery/2020-06/image-1592327135791.png
https://docs.gitlab.com/ee/administration/reference_architectures/1k_users.html
https://www.knoats.com/uploads/images/gallery/2020-06/image-1592332848684.png
https://docs.gitlab.com/ee/install/requirements.html#hardware-requirements
https://docs.gitlab.com/ee/install/requirements.html#hardware-requirements
https://docs.gitlab.com/ee/administration/reference_architectures/index.html
https://docs.gitlab.com/ee/administration/reference_architectures/10k_users.html
https://docs.gitlab.com/ee/administration/reference_architectures/1k_users.html
https://www.knoats.com/uploads/images/gallery/2020-06/image-1592333380358.png

Below, we can see the difference in CPU load seen within htop. This instance is running GitLab
locally with no NGINX proxy running on the host itself. At the time of this test, there were only two
users signed into the instance.

GitLab Running

GitLab Down

Some notable differences seen on a self hosted instance of GitLab

When hosting your own GitLab instance, you are granted an extra option when creating a
repository. This allows you to create repositories which are only available to users which are logged
in.

GitLab provides some default endpoints to gather general status information from your instance.
To see these, navigate to the Admin Area as an administrator and see the section below

Notable Features

Repository Creation

GitLab Settings
Health Check Endpoints

https://www.knoats.com/uploads/images/gallery/2020-06/image-1592334204944.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1592334336227.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1592337507595.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1592331537937.png

Readiness example -

Liveness example -

Metrics example -

Go here and enable self monitoring to automatically create a production environment which can be
monitored by Prometheus and then passed to Grafana through extra configuration later on.

Doing this prompts a notification with a campaign offer for free credit on the Google Cloud platform
and an additional credit from GitLab for getting started with a self hosted instance.

WIP

The output here is huge, and this screenshot is only a very small amount of the information
available. See this pastebin for the full output, which is nearly 3,000 lines long.

Self Monitoring

GitLab Applications

Grafana

https://www.knoats.com/uploads/images/gallery/2020-06/image-1592331778086.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1592331803022.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1592331841029.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1592336168544.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1592336117414.png
https://pastebin.com/qn27tWMM

GitLab's Omnibus includes a Grafana that is configured with GitLab's builtin OAuth right out of the
box if you are using any GitLab version beyond 12.0 . If you do face any issues, see the Official
Grafana OAuth Documentation for more detailed information on configuring this manually.

Visit http://yourdomain.com/-/grafana/login/gitlab to automatically link your GitLab account to a new
Grafana user.

By default, the GitLab Omnibus ships with the following Grafana dashboards configured

A partial example of the NGINX dashboard

To modify these files, which configure several back-end options for our GitLab instance, we need to
have started our services so Docker can mount the container volumes with the files we need to
edit. Run docker-compose up -d and check the directory you input for $GITLAB_HOME in your docker-
compose.yml. After a few seconds, we should notice this directory contains some new
configurations.

To regenerate the default configuration, remove or rename the $GITLAB_HOME/config/gitlab.rb and
restart the container

You must link the root user account to this Grafana in order to see various pages and
settings not available to normal users.

GitLab Server Advanced
Configurations

gitlab.rb

https://docs.gitlab.com/omnibus/settings/grafana.html#using-gitlab-as-an-oauth-provider
https://docs.gitlab.com/omnibus/settings/grafana.html#using-gitlab-as-an-oauth-provider
https://www.knoats.com/uploads/images/gallery/2020-06/image-1592327563175.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1592328950310.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1592338797428.png

GitLab sends mail using Sendmail by default. General email configurations can be found in the
Email Settings section of the $GITLAB_HOME/config/gitlab.rb configuration file.

If you want to use a SMTP server instead, you can configure this in the GitLab email server settings
section of the $GITLAB_HOME/config/gitlab.rb configuration file.

Mail Settings

Email Settings
gitlab_rails['gitlab_email_enabled'] = true
gitlab_rails['gitlab_email_from'] = 'example@example.com'
gitlab_rails['gitlab_email_display_name'] = 'Example'
gitlab_rails['gitlab_email_reply_to'] = 'noreply@example.com'
gitlab_rails['gitlab_email_subject_suffix'] = ''
gitlab_rails['gitlab_email_smime_enabled'] = false
gitlab_rails['gitlab_email_smime_key_file'] = '/etc/gitlab/ssl/gitlab_smime.key'
gitlab_rails['gitlab_email_smime_cert_file'] = '/etc/gitlab/ssl/gitlab_smime.crt'
gitlab_rails['gitlab_email_smime_ca_certs_file'] = '/etc/gitlab/ssl/gitlab_smime_cas.crt'

SMTP

GitLab email server settings
###! Docs: https://docs.gitlab.com/omnibus/settings/smtp.html
###! **Use smtp instead of sendmail/postfix.**

gitlab_rails['smtp_enable'] = true
gitlab_rails['smtp_address'] = "smtp.server"
gitlab_rails['smtp_port'] = 465
gitlab_rails['smtp_user_name'] = "smtp user"
gitlab_rails['smtp_password'] = "smtp password"
gitlab_rails['smtp_domain'] = "example.com"
gitlab_rails['smtp_authentication'] = "login"
gitlab_rails['smtp_enable_starttls_auto'] = true
gitlab_rails['smtp_tls'] = false

###! **Can be: 'none', 'peer', 'client_once', 'fail_if_no_peer_cert'**
###! Docs: http://api.rubyonrails.org/classes/ActionMailer/Base.html
gitlab_rails['smtp_openssl_verify_mode'] = 'none'

gitlab_rails['smtp_ca_path'] = "/etc/ssl/certs"
gitlab_rails['smtp_ca_file'] = "/etc/ssl/certs/ca-certificates.crt"

GitLab can handle incoming email based on various configurations. Official Incoming Mail
Documentation. This could enable features like responding to issue and merge requests via email.

By default, GitLab sends no email to users upon registration. To enable this feature, sign into your
instance as an adminsistrator and navigate to the Admin Area . Once there, go to the General Settings
of your instance and scroll down to expand the section below

Incoming

Outgoing

Revision #18
Created 12 June 2020 14:37:20 by Shaun Reed
Updated 18 December 2021 17:13:28 by Shaun Reed

http://gitlab.com/help/administration/incoming_email.md
http://gitlab.com/help/administration/incoming_email.md
https://www.knoats.com/uploads/images/gallery/2020-06/image-1592330697315.png

