Unity

Project Settings

Scripting
Shortcuts

Prefabs

Post Processing

New Input System

Project Settings

At first when opening the Unity editor | was a bit overwhelmed by the many options available, and
it can be hard to get going without at least knowing how to configure the most basic of settings for
a Unity project. In the sections below, I'll cover some simple settings that are worthwhile to
consider when creating a new project in Unity.

Playmode Tint

This option is not found in Project Settings , but | think it is something everyone entering into Unity
for the first time should consider. Navigate to the menu bar at the top of your editor and select
Edit->Preferences->Colors and adjust the Playmode Tint to something very noticable. This will avoid
forgetting you are in play mode and making some changes, only to be forced to revert them all
once exiting play mode.

For the rest of these sections, we will be working in the Project Settings panel opened with Edit-
>Project Settings... in the menu bar of the Unity editor.

Official Unity Project Settings Documentation

Project Name

It is not to be assumed that Unity will distribute builds of your game with your local Unity project
name as you defined it when creating your project initially. In fact, Unity requires us to specify
these details within the Player section of Project Settings . See the section below is adjusted to suit
the needs of your project.

Game / Application Icons

It's important to change things like this from the default settings, otherwise even a finished project
can end up looking incomplete. Navigate to the Player section and scroll down to adjust icon

https://www.knoats.com/uploads/images/gallery/2020-06/image-1591544219505.png
https://docs.unity3d.com/Manual/comp-ManagerGroup.html
https://www.knoats.com/uploads/images/gallery/2020-06/image-1591541753961.png

settings. It's important to be consistent across all platforms, and this can easily be done by
checking the oOverride for PC, Max & Linux Standalone tick box at the top of the panel. This will apply
your lcon settings on all platforms.

Splash Screen

This is for Unity Professional Licenses only

Within the Player panel we can find the below settings for modifying the splash screen of a game
or application created with Unity.

Quality Settings

It's important to adjust quality settings to suit your development environment so you aren't running
your game within the Unity editor in max settings.

You can rename quality levels, add new, and adjust platform-specific modes as well. It's important
to note that clicking the name of the quality setting in this table (just left of the check-marks) will
apply the settings within your editor for testing. The Default drop-down arrors correspond with
each platform at the top level of the table.

Graphics Settings

This is where you'll define the preconfigured graphics settings available to the player. Its important
to adjust these to suit the platform the build will be running on. As an example, this feature could
be useful when trying to distribute a test build of a Unity game with WebGL. We could reduce the
settings to improve performance within the browser to make the game much less demanding. This
allows us to build more efficiently to WebGL and not create an unecessarily demanding or slow
performing game given this basic platform of WebGL.

https://www.knoats.com/uploads/images/gallery/2020-06/image-1591540882097.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1591541034571.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1591541213761.png

Curious what WebGL is or looks like in use? | host some archived examples on my website, click

here to check out some Unity WebGL games that I've already built and hosted online for playing.

Input Manager

This section is very useful in configuring controls for your game that can then be used for scripting.
For example, the section below | have defined a button for Fire , which is triggered when the player
clicks the left mouse button

By using a custom script that defines global constants, we can reduce the task of changing these
values later on. Below, I'll cover an example of using the Input Manager paired with a few C# scripts
to define controls in global variables which can be easily modified in a central location. This avoids
a scenario where we have built a complex game and want to change controls later in development,
requiring us to change static values across numerous scripts. This is not only tedious but also
makes the project more prone to errors.

using System.Collections;
using System.Collections.Generic;

using UnityEngine;

public class Controls : MonoBehaviour
{

/I Constants used within the game to handle passing control settings to builtin unity functions with string
parameters

// Unity parses these strings against settings in Edit->ProjectSettings->InputSettings

// Character walking controls for joystick / keyboard
/l Keyboard has boolean movement, joystick has variable 0.0f - 1.0f
public const string c_MoveStrafe = "Horizontal";

public const string c_MoveWalk = "Vertical";

/I Character look controls for mouse / joystick

public const string c_LookMouseVertical = "Mouse Y";

https://shaunreed.com/2017/02/26/webgl/
https://shaunreed.com/2017/02/26/webgl/
https://www.knoats.com/uploads/images/gallery/2020-06/image-1591542267619.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1591542336677.png

public const string c_LookMouseHorizontal = "Mouse X";
public const string ¢_LookGamePadVertical = "Look Y";

public const string c_LookGamePadHorizontal = "Look X";

// Character movement modifiers

public const string c_ModJump = "Jump";
public const string c_ModSprint = "Sprint";
public const string c_ModCrouch = "Crouch";

/I Character weapon controls

public const string ¢_PrimaryAim = "Aim";

public const string ¢_PrimaryGamepadAim = "Gamepad Aim";

public const string c_PrimaryFire = "Fire";

public const string ¢c_PrimaryGamepadFire = "Gamepad Fire";

public const string c_PrimarySwitchWeapon = "Mouse ScrollWheel";
public const string ¢_PrimaryGamepadSwitchWeapon = "Gamepad Switch";
public const string c_PrimaryHide = "Primary Hide";

public const string ¢_PrimaryNextWeapon = "NextWeapon";

// Ul controls

public const string c_UIPauseMenu = "Pause Menu";
public const string ¢_UISubmit = "Submit";
public const string c_UlCancel = "Cancel";

These constants can then be used in a relative Playerinput class, which can handle recieving input
from the player at a higher level so we won't need to refactor all of our scripts in the scenario that
we want to modify our controls.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

// A script to pass player input to a relative GameObject's Controller script

public class Playerlnput : MonoBehaviour

{

PlayerController playerController;

/] Start is called before the first frame update

void Start()

{
playerController = GetComponent<PlayerController>();
Cursor.lockState = CursorLockMode.Locked;

Cursor.visible = false;

// Update is called once per frame
void Update()
{
// Always check if the player wants to unbind their cursor lock state

UpdatelLockState();

public bool CanProcessInput()
{
// If the cursor is locked within the game, return true

return Cursor.lockState == CursorLockMode.Locked;

public Vector3 GetMovement()
{
// If the cursor is not locked within the game, do nothing

if (!CanProcessinput()) return Vector3.zero;

// Create a file / class (Controls.cs) to hold strings which can be passed to functions in all scripts
// Allows for easy control customization without reefactoring a lot of code
// GetAxis returns 0.0f-1.0f strength of movement (allows joystick variable movement, keyboard movement
is 1.0f if key pressed)
// Horizontal = a,d Vertical = w,s
Vector3 move;
switch(playerController.targetPov)
{
case Kamera.pov.Mounted:
move = transform.forward * Input.GetAxis(Controls.c_MoveStrafe) * -1.0f + transform.right *
Input.GetAxis(Controls.c_MoveWalk) * 1.0f ;

break;

default:

move = transform.right * Input.GetAxis(Controls.c_MoveStrafe) + transform.forward *

Input.GetAxis(Controls.c_MoveWalk);
break;
}
// Return the clamped amnount of movement to apply to a GameObject within some relative Controller
script

return move;

public float GetLookHorizontal()
{

return GetLookAxis(Controls.c_LookMouseHorizontal, Controls.c_LookGamePadHorizontal);

public float GetLookVertical()
{

return GetLookAxis(Controls.c_LookMouseVertical, Controls.c_LookGamePadVertical);

/I If the player presses the UlCancel key, the cursor is unlocked.
void UpdatelLockState()
{
if (Input.GetButton(Controls.c_UlCancel)) Cursor.lockState = CursorLockMode.None;

else if (Input.GetMouseButton(0)) Cursor.lockState = CursorLockMode.Locked;

/I Checks whether the look input is via mouse or gamepad and returns a float 0.0f-1.0f of the strength
float GetLookAxis(string mouselLook, string stickLook)
{

if (CanProcessinput())

{

/I Check if there is any input from a gamepad controller on the given axis
bool isGamePad = Input.GetAxis(stickLook) !'= 0.0f;
// If we are using a gamepad use stickLook's strength, otherwise use mouse input

float str = isGamePad ? Input.GetAxis(stickLook) : Input.GetAxis(mouselLook);

if (isGamePad)
{

// since mouse input is already deltaTime-dependant, only scale input with frame time if it's coming

from sticks

str *= Time.deltaTime;

else

// reduce mouse input amount to be equivalent to stick movement
str *= 0.01f;
#if UNITY_WEBGL
// Mouse tends to be even more sensitive in WebGL due to mouse acceleration, so reduce it even more
/] str *= webglLookSensitivityMultiplier;
#endif
}

return str;

}

else return 0.0f;

public bool GetCrouchDown()
{

return Input.GetButtonDown(Controls.c_ModCrouch);

}
public bool GetCrouchUp()

{
return Input.GetButtonUp(Controls.c_ModCrouch);

public bool GetSprintHeld()

{
return Input.GetButton(Controls.c_ModSprint);

public bool GetjumpPress()
{

return Input.GetButtonDown(Controls.c_ModJump);

public bool GetMouseFire()
{

return Input.GetButtonDown(Controls.c_PrimaryFire) ||

Input.GetButtonDown(Controls.c_PrimaryGamepadFire);

}

public bool GetMouseAlt()
{
return Input.GetButtonDown(Controls.c_PrimaryAim) ||
Input.GetButtonDown(Controls.c_PrimaryGamepadAim);

}

public bool GetLowerPrimary()

{

return Input.GetButtonDown(Controls.c_PrimaryHide);

public int GetNumberPress()

{
if(Input.GetKeyDown(KeyCode.AlphaO0)) return 9;
else if(Input.GetKeyDown(KeyCode.Alphal)) return 0;
else if(Input.GetKeyDown(KeyCode.Alpha2)) return 1;
else if(Input.GetKeyDown(KeyCode.Alpha3)) return 2;
else if(Input.GetKeyDown(KeyCode.Alpha4)) return 3;
else if(Input.GetKeyDown(KeyCode.Alpha5)) return 4;
else if(Input.GetKeyDown(KeyCode.Alpha6)) return 5;
else if(Input.GetKeyDown(KeyCode.Alpha7)) return 6;
else if(Input.GetKeyDown(KeyCode.Alpha8)) return 7;
else if(Input.GetKeyDown(KeyCode.Alpha9)) return 8;

else return -1;

If you want to actually be able to apply damage, we need a Target script. See the simple example
below for a script which enables this to occur. Later, within WeaponControl.cs , we will check if the
object we hit has this script attached, and if it does we can deal damage to the set HP amount
given to the Target

using System.Collections;
using System.Collections.Generic;

using UnityEngine;

public class Target : MonoBehaviour

{

[SerializeField]

private float health;

[SerializeField]
[Tooltip("If this is true we spawn the broken GameObject on destruction")]

public bool isDestructable = false;

[SerializeField]
[Tooltip("The GameObject to spawn when this object is broken")]
public GameObject broken;

// Start is called before the first frame update
void Start()
{

// Update is called once per frame
void Update()
{

public void TakeDamage(float amount)
{
health -= amount;
if (health <= 0)
{
if(isDestructable) Instantiate(broken, gameObject.transform, false);

Destroy(gameObject);

We could then use this Playerinput.cs script within a WeaponControl.cs script check if the player
presses this button in Update called once per frame. If they have tried to shoot and have a weapon
equipped, we can call the relative weapon's ShootWeapon() function. Note that you will have to
attach the playerinput and playerWeapons variables to relative scripts within your editor.

public class WeaponControl : MonoBehaviour
{
[SerializeField]
Playerinput playerinput;
[SerializeField]
PlayerWeapons playerWeapons;
[SerializeField]
public Transform muzzle;
[SerializeField]
public GameObject projectile;
[SerializeField]
Camera mainCamera;
[SerializeField]
ParticleSystem muzzleFlash;
[SerializeField]
GameObject hitEffect;
private float range = 500.0f;
private float damage = 10.0f;

void Update()

{
if (playerlnput.GetMouseFire() && playerWeapons.hasWeapon) ShootWeapon();

0 void ShootWeapon()
{
fireSFX.Play();
GameObject projectileObj = Instantiate(projectile, muzzle.transform.position +
mainCamera.transform.forward, mainCamera.transform.rotation);

projectileObj.GetComponent<Rigidbody>().AddForce(transform.forward * 100);

RaycastHit hit;

if (Physics.Raycast(muzzle.transform.position, mainCamera.transform.forward, out hit, range))

Target temp = hit.transform.GetComponent<Target>();

if (temp != null) temp.TakeDamage(damage);

Debug.Log(hit.transform.name);

muzzleFlash.Play();

GameObject hitObject = Instantiate(hitEffect, hit.point, Quaternion.LookRotation(hit.normal));
Destroy(hitObject, 1f);

if (hit.rigidbody !'= null) hit.rigidbody.AddForce(-hit.normal * hitForce);

Scripti
Scripting in Unity uses C# and is very well documented. In the sections below, I'll Provide examples

and edge cases where possible, and link to the relative documentation for quick reference.

For a collection of classes and structs that are required for Unity to function, which means they will

always be available to you when scripting in Unity, head over to UnityEngine.CoreModule

Documentation

Transform

This class controls and tracks object position, rotation, scale.

Official Transform Class Documentation

Local Space

Local space is the transform relative to the object's parent. An example of this can be seen below
where | have selected an object and the transform controls are centralized on the exact transform
of that object relative to its local position.

Take notice of three things in the above screenshot. First, we have selected Local position in the
top-left near our transform controls. Clicking this button again will toggle between Local and World
space. Second, take note of the World Space axis shown at the top-right of the scene view. Third, in
contrast to the World space axis, notice the GameObject's axis shown in the scene view are
different in orientation. The transform axis shown on the GameObject are modifying and referring
to the GameObject's transform within Local space.

World Space

World space is the position of the GameObject rooted within the scene. An example of this is seen
in selecting the exact same object in the editor and toggling world space transform view. This
makes sure the transform controls are the same as the World Space axis, instead of referring
directly to the transform of a local object.

https://docs.unity3d.com/ScriptReference/UnityEngine.CoreModule.html
https://docs.unity3d.com/ScriptReference/UnityEngine.CoreModule.html
https://docs.unity3d.com/ScriptReference/Transform.html
https://www.knoats.com/uploads/images/gallery/2020-06/image-1591551913335.png

Again, take notice of three things in the above screenshot. First, we have selected Global position
in the top-left near our transform controls. Clicking this button again will toggle between Local and
World space. Second, take note of the World Space axis shown at the top-right of the scene view.
Third, in contrast to the World space axis, notice the GameObject's axis shown in the scene view
are different in orientation. The transform axis shown on the GameObject are modifying and
referring to the GameObject's transform within World space.

Vector3

Official Vector3 Struct Documentation

AXis

In Unity 3D you will use the X, Y, and z axis frequently both in positioning within the editor and
scripting. It helps to have a clear understanding of the names these axis can be referred to with, as
it will greatly improve your ability to access and modify these values without over complicating
things.

The X axis can be accessed with the right keyword when accessing any class which stores axis
information

The Y axis can be accessed with the Up keyword when accessing any class which stores axis
information

The z axis can be accessed with the forward keyword when accessing any class which stores axis
information

Similarly, when modifying a Vector, we can easily flip these axis by accessing the opposite of these
keywords -

The X negative axis can be accessed with the left keyword when accessing any class which stores
axis information

The Y negative axis can be accessed with the down keyword when accessing any class which
stores axis information

The z negative axis can be accessed with the back keyword when accessing any class which
stores axis information

So, the Vector3 equivalents to these would be
X axis, Vector3(1.0f, 0.0f, 0.0f) , is equivalent to right
Y axis, Vector3(0.0f, 1.0f, 0.0f) , is equivalent to up

https://www.knoats.com/uploads/images/gallery/2020-06/image-1591552157841.png
https://docs.unity3d.com/ScriptReference/Vector3.html
https://www.knoats.com/uploads/images/gallery/2020-06/image-1591629600009.png

Z axis, Vector3(0.0f, 0.0f, 1.0f) , is equivalent to forward

X negative axis, Vector3(-1.0f, 0.0f, 0.0f) , is equivalent to left
Y negative axis, Vector3(0.0f, -1.0f, 0.0f) , is equivalent to down
Z negative axis, Vector3(0.0f, 0.0f, -1.0f) , is equivalent to back

Quaternion

Official Quaternion Struct Documentation

https://docs.unity3d.com/ScriptReference/Quaternion.html

Shortcuts

Since Unity has many features and shortcuts available that will widen the gap between an
experienced developer and a beginner, I'll list some of my most frequently used shortcuts and
tricks here. Though these can all be viewed and modified by opening the panel below in Edit-
>Shortcuts... , there is a huge amount of shortcuts and this can be a lot to look at.

Transform Controls

Official Positioning Documentation

At the top-left of your Unity editor, you'll notice the transform control buttons where you can switch
between Hand, Move, Rotate, Scale, Rect, and Universal controls. Each of these can also be
toggled by pressing Q, w, E, R, T, and Y, respectively.

Snapping to Collision

There will be many cases where you want to place an object on a table or ground within your
scene. You should not need to manually fumble with axis to do this, but instead given that both
objects have collision of some kind you can simply hold sShift+Ctrl while using the Move tool and
dragging the grey box that appears in the center of the object, NOT the axis themselves. This will
immediately snap the object to the collision nearest to your cursor as you drag it around the scene.
There may be minor adjustments needed, but overall this should do the trick for most basic items.

Object to Scene View Transform

You will frequently want to move an object to the position and rotation of your current scene view
in World space. You could manually drag the object across the scene in unity, adjusting each axis

https://www.knoats.com/uploads/images/gallery/2020-06/image-1591549322011.png
https://docs.unity3d.com/Manual/PositioningGameObjects.html
https://www.knoats.com/uploads/images/gallery/2020-06/image-1591548971392.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1591555254244.png

as needed. Alternatively, you can fly to a position near your desired location for the object, select
the object, then press shift-Ctrl-F to move the object to your exact position and rotation. This is very
useful when setting up cameras, as you can just fly to the view you want the camera to display,
select the camera, and press shift-Ctrl-F to set it to that exact position with a lot less fumbling
around.

Unclickable Objects

Tired of clicking in the scene view and selecting the terrain or some other GameObject? Within the
scene hierarchy you can toggle whether or not an object should be clickable. Simply click the small
hand next to the object's name in the hierarchy.

You can also toggle hiding and showing objects by clicking the eye icon just to the left of this
setting

https://www.knoats.com/uploads/images/gallery/2020-06/image-1591557456670.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1591557501040.png

Prefabs

Since the Unity workflow is built around prefabs, | figured I'd document some specific use cases for
the many features introduced in the Unity LTS 2019 release which added support for prefab
variants and nested prefabs. On this page, I'll cover some good practices and features these prefab
features provide.

I'd highly recommend heading over to devassets.com to grab some of the assets you see featured

across the Unity pages on Knoats. They are entirely free and give you a lot to work with when
learning. If you can afford it, | would recommend donating to the developers. Not only does this
unlock more assets you can get with the package you donated to, but it shows support to the
developer that organized all of these great assets in one place for you to learn with.

Positioning Prefabs

Being relatively new to Unity, | began by grabbing some assets off the Unity Store. Like most free
assets on the store, these did not come entirely assembled for me and required me to work a bit to
get things in a state that is usable for even the most basic games. This has been a good learning
experience, and required no scripting, so if you are new to Unity and not quite ready to script,
doing this will give you experience creating prefabs, working with materials, shaders, lighting,
textures, and much more.

At first when creating a prefab of an object that exists within your scene, you may see something
like the below when opening the prefab to edit

This is clearly not the orientation that we expect this SciFi_Rover vehicle to have when initially
placed in our scene. To fix this, be sure you are editing the prefab in the prefab editor and NOT
directly within your scene. Then adjust the transform to be in the orientation desired.

Below, we see the initial transform settings

First, set all but the Scale of your object to 0. Shown in the screenshot below, there will be many
cases that this does not produce the desired results, so we still need to modify the transform

http://devassets.com/
https://www.knoats.com/uploads/images/gallery/2020-06/image-1591556270971.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1591556400262.png

further

After making some adjustments, the object's final orientation within the prefab editor is seen below

And the final transform properties of the root GameObject are now much cleaner -

https://www.knoats.com/uploads/images/gallery/2020-06/image-1591556607873.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1591556709523.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1591556742042.png

Post Processing

Good graphics are good. That's why | was excited to find adding Post Processing to my Unity 3D
project was not only easy to do, but a huge improvement to the visuals within my scene. This
enables common modern graphics features like Motion Blur, Ambient Occlusion, Depth of Field, and
more.

Add Post Processing

Post Processing is added to each scene individually, and not a project as a whole. To add this to a
Unity 3D project, we first need to add the Post-process Layer component to our scene's main camera.
Next we'll add a Post Processing Volume that globally effects our entire scene. Then we can add a
PostProcessing_Profile for our scene and add new visual effects accordingly.

Configuring the Camera

Its important that the camera the player views the game from contains this component. Otherwise,
if the player can toggle between a camera which has the Post-process Layer and one that does not,
they effects gained by post processing will only be rendered in one view and not the other.

Once we've added the above component to the scene's main camera, we need to adjust the layer
of both this component and our main camera to reflect this. Change to the Postprocessing Layer in
the Post-process Layer component.

Now change the layer of the camera itself to the Postprocessing Layer as well

https://www.knoats.com/uploads/images/gallery/2020-06/image-1591622057414.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1591571962826.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1591572189049.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1591572228339.png

Creating the Volume

Now anywhere within your current scene hierarchy, add an empty GameObject and name it
PostProcessingVolume or otherwise something relative to your specific scenario. Set this
GameObject's layer to Post Processing . Select this new GameObject and within the inspector Add
Component->Post-processing Volume as seen below

At a glance, there is not much here. But once we add a Post Process Profile and finish configuring
our scene we will use this component to adjust some pretty neat looking visuals.

Be sure to apply the Post Processing layer to the Camera and Volume GameObjects within
your scene before continuing or the effects will not be applied

Creating the Profile

Within the GameObject created for our Volume click New to the right of the Profile field in the new
Post-processing Volume component.

Unity will automatically create a Post Processing Profile and place it in a directory relative to your
scene. Now we can check the Global tick box to apply this volume to our entire scene and start
adding new effects to our scene!

An example of some effects that | added to my scene to achieve the screenshot at the top of this
page

That's it! See the glow coming from the lights in the pictures below for an example of how this can
be used to add the Bloom effect to an emissive light source.

https://www.knoats.com/uploads/images/gallery/2020-06/image-1591572363971.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1591572506570.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1591572699575.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1591572848307.png

X
XX

https://www.knoats.com/up7loads/images/gallery/2020-06/image-1591817450274.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1591817546494.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1591818011855.png
https://www.knoats.com/uploads/images/gallery/2020-06/image-1591817973490.png

New Input System

Setup

Using the default configuration for a keyboard&mouse / Gamepad Input Actions asset in unity, we
can implement universal controls given various input devices.

v Auto-Save @

Properties

Digital Normalized

Left Button [Mouse]

Issues getting an input device to work? Click window->Analysis->Input Debugger and at the top-
left of the new window select Options->Add Devices Not Listed in 'Supported Devices' and any input
device that was not previously working should now be passing input to unity.

This was a weird bug for me to figure out, so | thought it was worth a mention. For me, | had
to do this in order to get Unity to accept input from my Corsair gaming mouse. | searched up
a lot of information on this new input system thinking | was using it wrong, and later found
that my mouse was not passing input to unity and my code was correct.

Add Devices Mot Listed in 'Supported Devices'
Enable Event Diagnostics
Lock Input to Game View

Simulate Touch Input From Mouse or Pen

Layou
settings (InpL em.inputsettings.

https://knoats.com/uploads/images/gallery/2021-04/image-1618853283926.png
https://knoats.com/uploads/images/gallery/2021-04/image-1618853641994.png

Use

We can call a specific function from a specific component

Using Playerlnput component->Behavior->Invoke Unity Events -

Rigidbody playerRigidbody;
public PlayerControls controls;
Vector2 playerVelocity;

public float playerSpeed = 5.0f;

void Awake() {
playerRigidbody = GetComponent<Rigidbody>();
controls = new PlayerControls();

}

void OnEnable() {
controls.Player.Enable();

}

void OnDisable() {
controls.Player.Disable();

}

public void OnMove(InputAction.CallbackContext context) {
print("Moving: " + context.ReadValue<Vector2>());
playerVelocity = context.ReadValue<Vector2>();

}

public void OnLook(InputAction.CallbackContext context) {
print("Look: " + context.ReadValue<Vector2>());

}

public void OnFire(InputAction.CallbackContext context) {
print("Bang");
}

void Update()
{

playerRigidbody.position += new Vector3(playerVelocity.x * Time.deltaTime * playerSpeed,
0,
playerVelocity.y * Time.deltaTime * playerSpeed);

Or we can let Unity call functions defined using the naming convention void
On\[ActionName\](InputValue value)

Using Playerinput component->Behavior->Send Messages -

Rigidbody playerRigidbody;
public PlayerControls controls;
Vector2 playerVelocity;

public float playerSpeed = 5.0f;

void Awake() {
playerRigidbody = GetComponent<Rigidbody>();
controls = new PlayerControls();

}

void OnEnable() {
controls.Player.Enable();

}

void OnDisable() {
controls.Player.Disable();

}

public void OnMove(InputValue value) {
playerVelocity = value.Get<Vector2>();
print("Moving: " + value.Get<Vector2>());

}

public void OnMove(InputValue value) {
playerVelocity = value.Get<Vector2>();
print("Moving: " + value.Get<Vector2>());

}

void Update()
{
playerRigidbody.position += new Vector3(playerVelocity.x * Time.deltaTime * playerSpeed,
0,
playerVelocity.y * Time.deltaTime * playerSpeed);

Broadcast messages is the same as Send Messages, except broadcasting invokes the same
methods on all child objects who have a component with function definitions that match this
naming convention.

