
Links and sources

Example of using the GAS: GASShooter GitHub project

Unofficial but detailed GAS Documentation

Epic livestream in depth look at GAS

Highly recommended: Setting up GAS youtube tutorial

Any Actor that wishes to use GameplayAbilities, have Attributes, or receive GameplayEffects must
have one AbilitySystemComponent (ASC) attached to them.
ASC can be assigned to weapons, players, or AI

The Actor with the ASC attached to it is referred to as the OwnerActor of the ASC.
The physical representation Actor of the ASC is called the AvatarActor
The OwnerActor and AvatarActor can either be the same or different depending on the use case

If your Actor will respawn and need persistence of Attributes or GameplayEffects between spawns
(like a hero in a MOBA), then the ideal location for the ASC is on the PlayerState.

In the sections below, my game is named unrealgame5 , and any appearances of this string should
be replaced by your own project name. This page outlines the process of setting up the Gameplay
Ability System for use in an Unreal Engine 5 game using C++. Blueprints can still be used for
prototyping new abilities, which can later be translated to C++.

To setup out UE5 project to use the required modules, we need to edit our <PROJECT_NAME>.build.cs
file. This file should have been generated by Unreal Engine when your project was created, and for
me my file is named unrealgame5.build.cs

Gameplay Ability System

Notes

Brief

Project Plugins and Modules

https://github.com/tranek/GASShooter
https://github.com/tranek/GASDocumentation#concepts-a
https://www.youtube.com/watch?v=YvXvWa6vbAA&list=PL2u3PgypHeMxgVYCSEY7D7Fw_chCHlt_J&index=3
https://www.youtube.com/watch?v=Yub52f4ZUU0

Initial contents of unrealgame5.build.cs , before I made any changes.

Add "GameplayAbilities", "GameplayTags", "GameplayTasks" modules to unrealgame5.build.cs so your file
looks like the following.

Then within the editor go to Edit->Plugins... and enable the Gameplay Abilities plugin. You will need to
restart the editor for the changes to apply.

using UnrealBuildTool;

public class unrealgame5 : ModuleRules
{
	public unrealgame5(ReadOnlyTargetRules Target) : base(Target)
	{
		PCHUsage = PCHUsageMode.UseExplicitOrSharedPCHs;

		PublicDependencyModuleNames.AddRange(new string[] {"Core", "CoreUObject", "Engine", "InputCore",
"HeadMountedDisplay"});
 }
}

using UnrealBuildTool;

public class unrealgame5 : ModuleRules
{
	public unrealgame5(ReadOnlyTargetRules Target) : base(Target)
	{
		PCHUsage = PCHUsageMode.UseExplicitOrSharedPCHs;

		PublicDependencyModuleNames.AddRange(new string[] { "Core", "CoreUObject", "Engine", "InputCore",
"HeadMountedDisplay" });
		PublicDependencyModuleNames.AddRange(new string[] { "GameplayAbilities", "GameplayTags",
"GameplayTasks" });
	}
}

To set up the scaffolding for the GAS, we need a few things -

Enumeration of abilities to correlate with input actions
Core GameplayAbilitySystem
Set of attributes for our player and / or enemies
Player character inheriting from IAbilitySystemInterface class
GameplayEffect to apply default attributes for our player / enemies
AnimGraphs with Montage slots for handling abilitiy animations

So, to complete this setup you will at least need to define a few new classes for your project.

For my project I follow the same naming convention used with GASDocumentation. I'll paste it
below, but for the first few files required to set up the Gameplay Ability System (GAS), we are
defining the backend of the system so none of these conventions apply. For these files, I added the
GAS_ convention.

First, we need to modify the contents of the header file for our unreal project. My project is named
unrealgame5 so the file is unrealgame5.h , and the contents are below. If you already have

C++ Initial Setup

Prefix 	Asset Type
GA_ 	GameplayAbility
GC_ 	GameplayCue
GE_ 	GameplayEffect
GAS_ GameplayAbilitySystem (Core Configurations)

Ability Enumeration

https://knoats.com/uploads/images/gallery/2022-01/image-1642607769456.png

information here, just make sure the EGASAbilityInputID enumeration is added to the header file and
save your changes. This enumeration is used to correlate input actions to activate certain abilities
in our game.

Note: Attack below must either be changed to match or made to match some keybind within your
Edit->Project Settings->Input options menu.

Next, we need to create an AbilitySystemComponent . This will be the component that we attach to
actors that we want to take use with the GAS. To create this component, open your project in
unreal and create a new C++ source file, inheiriting from the AbilitySystemComponent base class.

This base class is provided by UE5, assuming you have the GameplayAbilities plugin installed to your
project. In order to inherit from it, we need to create a new C++ Class. We must be in the C++
Classes subdirectory of our project in order to do this.

// Copyright Epic Games, Inc. All Rights Reserved.

#pragma once

#include "CoreMinimal.h"

UENUM(BlueprintType)
enum class EGASAbilityInputID : uint8
{
 None,
 Confirm,
 Cancel,
 Attack
};

Ability System Component

Next click All Classes and search for AbilitySystemComponent .

Click next and name your class, I'll name this class GAS_AbilitySystemComponent .

https://knoats.com/uploads/images/gallery/2022-08/image-1661120353126.PNG
https://knoats.com/uploads/images/gallery/2022-08/image-1661120409203.PNG

The generated files are seen below. You don't need to put anything else in here for now. Note that
UE5 prefixed our original class name GAS_AbilitySystemComponent with a U - it's name in the source
code is UGAS_AbilitySystemComponent , this is normal and to be expected.

// GAS_AbilitySystemComponent.h
// All content (c) Shaun Reed 2021, all rights reserved

#pragma once

#include "CoreMinimal.h"
#include "AbilitySystemComponent.h"
#include "GAS_AbilitySystemComponent.generated.h"

/**
 *
 */
UCLASS()
class UNREALGAME5_API UGAS_AbilitySystemComponent : public UAbilitySystemComponent
{

https://knoats.com/uploads/images/gallery/2022-01/image-1642612991508.png

Next we'll setup the base class that we will use for adding abilities to our game. To do this we need
to create another new C++ Source file like we did in the previous step, only this time we will inherit
from the GameplayAbility class provided with the GameplayAbilities UE5 plugin.

I named this class GAS_GameplayAbility and the source code is seen below

	GENERATED_BODY()

};

// GAS_AbilitySystemComponent.cpp
// All content (c) Shaun Reed 2021, all rights reserved

#include "GAS_AbilitySystemComponent.h"

Gameplay Abilities

// GAS_GameplayAbility.h
// All content (c) Shaun Reed 2021, all rights reserved

#pragma once

https://knoats.com/uploads/images/gallery/2022-08/image-1661121051794.png

Next, we need to create an AttributeSet for our game. Repeat the process of creating a new C++
sourcce file for your ue5 project, but this time inherit from AttributeSet

#include "../unrealgame5.h"

#include "CoreMinimal.h"
#include "Abilities/GameplayAbility.h"
#include "GAS_GameplayAbility.generated.h"

UCLASS()
class UNREALGAME5_API UGAS_GameplayAbility : public UGameplayAbility
{
	GENERATED_BODY()

public:
	UGAS_GameplayAbility();

	UPROPERTY(BlueprintReadOnly, EditAnywhere, Category = "Ability")
		EGASAbilityInputID AbilityInputID = EGASAbilityInputID::None;
};

// All content (c) Shaun Reed 2021, all rights reserved
// GAS_GameplayAbility.cpp

#include "GAS_GameplayAbility.h"

UGAS_GameplayAbility::UGAS_GameplayAbility() { }

Attribute Sets

I named this class GAS_AttributeSet and the files genereated are below

// GAS_AttributeSet.h
// All content (c) Shaun Reed 2021, all rights reserved

#pragma once

#include "AbilitySystemComponent.h"

#include "CoreMinimal.h"
#include "AttributeSet.h"
#include "GAS_AttributeSet.generated.h"

// Macros to define getters and setters for attributes (AttributeSet.h)
#define ATTRIBUTE_ACCESSORS(ClassName, PropertyName) \
		GAMEPLAYATTRIBUTE_PROPERTY_GETTER(ClassName, PropertyName) \
		GAMEPLAYATTRIBUTE_VALUE_GETTER(PropertyName) \
		GAMEPLAYATTRIBUTE_VALUE_SETTER(PropertyName) \
		GAMEPLAYATTRIBUTE_VALUE_INITTER(PropertyName)

UCLASS()
class UNREALGAME5_API UGAS_AttributeSet : public UAttributeSet
{
	GENERATED_BODY()

https://knoats.com/uploads/images/gallery/2022-01/image-1642613191128.png

 UGAS_AttributeSet();

public:
	virtual void GetLifetimeReplicatedProps(TArray<FLifetimeProperty>& OutLifetimeProps) const override;

	/*
	* Attribute Definitions
	*/

	// Health

	UPROPERTY(BlueprintReadOnly, Category = "Attributes", ReplicatedUsing = OnRep_Health)
	FGameplayAttributeData Health;
	// Use macros we defined from AttributeSet.h to generate getters and setters
	ATTRIBUTE_ACCESSORS(UGAS_AttributeSet, Health);

	UFUNCTION()
		virtual void OnRep_Health(const FGameplayAttributeData& OldHealth);

	// Stamina

	UPROPERTY(BlueprintReadOnly, Category = "Attributes", ReplicatedUsing = OnRep_Stamina)
	FGameplayAttributeData Stamina;
	ATTRIBUTE_ACCESSORS(UGAS_AttributeSet, Stamina);

	UFUNCTION()
		virtual void OnRep_Stamina(const FGameplayAttributeData& OldStamina);

	// Attack Power

	UPROPERTY(BlueprintReadOnly, Category = "Attributes", ReplicatedUsing = OnRep_AttackPower)
	FGameplayAttributeData AttackPower;
	ATTRIBUTE_ACCESSORS(UGAS_AttributeSet, AttackPower);

	UFUNCTION()
		virtual void OnRep_AttackPower(const FGameplayAttributeData& OldAttackPower);
};

// GAS_AttributeSet.cpp
// All content (c) Shaun Reed 2021, all rights reserved

In the files below, my character is named ThirdPersonCharacter , so any appearances of this string
may need to be replaced with your character's name instead. To setup your character that inherits
from ACharacter base class, make the following changes to your files.

In the ThirdPersonCharacter.h file, make sure you're inheriting from public IABilitySystemInterface . The
start of your class should look like this. Pay attention to the includes.

#include "Net/UnrealNetwork.h" // DOREPLIFETIME
#include "GAS_AttributeSet.h"

UGAS_AttributeSet::UGAS_AttributeSet()
{
}

void UGAS_AttributeSet::GetLifetimeReplicatedProps(TArray<FLifetimeProperty>& OutLifetimeProps) const
{
 Super::GetLifetimeReplicatedProps(OutLifetimeProps);

 DOREPLIFETIME_CONDITION_NOTIFY(UGAS_AttributeSet, Health, COND_None, REPNOTIFY_Always);
 DOREPLIFETIME_CONDITION_NOTIFY(UGAS_AttributeSet, Stamina, COND_None, REPNOTIFY_Always);
 DOREPLIFETIME_CONDITION_NOTIFY(UGAS_AttributeSet, AttackPower, COND_None, REPNOTIFY_Always);

}

void UGAS_AttributeSet::OnRep_Health(const FGameplayAttributeData& OldHealth)
{
 GAMEPLAYATTRIBUTE_REPNOTIFY(UGAS_AttributeSet, Health, OldHealth);
}

void UGAS_AttributeSet::OnRep_Stamina(const FGameplayAttributeData& OldStamina)
{
 GAMEPLAYATTRIBUTE_REPNOTIFY(UGAS_AttributeSet, Stamina, OldStamina);
}

void UGAS_AttributeSet::OnRep_AttackPower(const FGameplayAttributeData& OldAttackPower)
{
 GAMEPLAYATTRIBUTE_REPNOTIFY(UGAS_AttributeSet, AttackPower, OldAttackPower);
}

Character Setup

Next, we add an instance of our GAS_AbilitySystem class using the UGAS_AbilitySystemComponent
typename, and we also add an instance of our GAS_AttributeSet class using the UGAS_AttributeSet
type.

// All content (c) Shaun Reed 2021, all rights reserved

#pragma once

// GAS includes
#include "AbilitySystemInterface.h"
#include <GameplatEffectTypes.h>

#include "CoreMinimal.h"
#include "GameFramework/Character.h"
#include "ThirdPersonCharacter.generated.h"

UCLASS()
class UNREALGAME5_API AThirdPersonCharacter : public ACharacter, public IAbilitySystemInterface
{
	GENERATED_BODY()

public:

// more code....

Character Components

UCLASS()
class UNREALGAME5_API AThirdPersonCharacter : public ACharacter, public IAbilitySystemInterface
{
	GENERATED_BODY()

public:
	// GAS declarations
	UPROPERTY(VisibleAnywhere, BlueprintReadOnly, Category = "GAS")
	class UGAS_AbilitySystemComponent* AbilitySystemComponent;

	UPROPERTY(VisibleAnywhere, BlueprintReadOnly, Category = "GAS")
 class UGAS_AttributeSet* Attributes;
// more code....

Now we need to modify the character's constructor to add the new components we've declared. I
removed the code from my constructor that wasn't related to the GAS. The additions are below.

So we have the components we need, and the next step is to provide the required definitions for
virtual functions we've inheirted from IAbilitySystemInterface

To start, we declare the required virtual functions that we will need to define to use the GAS.

// ThirdPersonCharacter.cpp

AThirdPersonCharacter::AThirdPersonCharacter()
{
 	// Initializing any components unrelated to GAS...
	// ...

	 // Initialize GAS related components
	AbilitySystemComponent =
CreateDefaultSubobject<UGAS_AbilitySystemComponent>(TEXT("AbilitySystemComponent"));
	AbilitySystemComponent->SetIsReplicated(true);
	AbilitySystemComponent->SetReplicationMode(EGameplayEffectReplicationMode::Minimal);
 Attributes = CreateDefaultSubobject<UGAS_AttributeSet>(TEXT("Attributes"));
}

Virtual Functions

UCLASS()
class UNREALGAME5_API AThirdPersonCharacter : public ACharacter, public IAbilitySystemInterface
{
	GENERATED_BODY()

public:
	// GAS declarations
	UPROPERTY(VisibleAnywhere, BlueprintReadOnly, Category = "GAS")
	class UGAS_AbilitySystemComponent* AbilitySystemComponent;

	UPROPERTY(VisibleAnywhere, BlueprintReadOnly, Category = "GAS")
 class UGAS_AttributeSet* Attributes;

	virtual class UAbilitySystemComponent* GetAbilitySystemComponent() const override;

We implement GetAbilitySystemComponent , which is just a simple getter that returns our
UGAS_AbilitySystemComponent component.

Next we need to overload a virtual function InitializeAttributes() to handle initializing the attributes
for our game at the start. We also declare the DefaultAttributeEffect member variable to help define
and apply the default attributes for our character.

Define InitializeAttributes()

// more code....

// ThirdPersonCharacter.cpp
UAbilitySystemComponent* AThirdPersonCharacter::GetAbilitySystemComponent() const
{
	return AbilitySystemComponent;
}

// ThirdPersonCharacter.h
UCLASS()
class UNREALGAME5_API AThirdPersonCharacter : public ACharacter, public IAbilitySystemInterface
{
	GENERATED_BODY()

public:
	// GAS declarations
	UPROPERTY(VisibleAnywhere, BlueprintReadOnly, Category = "GAS")
	class UGAS_AbilitySystemComponent* AbilitySystemComponent;

	UPROPERTY(VisibleAnywhere, BlueprintReadOnly, Category = "GAS")
 class UGAS_AttributeSet* Attributes;

	virtual class UAbilitySystemComponent* GetAbilitySystemComponent() const override;

 // Add these lines
 	virtual void InitializeAttributes();
 UPROPERTY(BlueprintReadOnly, EditDefaultOnly, Category = "GAS")
 TSubclassOf<class UGameplayEffect> DefaultAttributeEffect;
// more code....

// ThirdPersonCharacter.cpp
void AThirdPersonCharacter::InitializeAttributes()

Similar to how we defined default attributes, we define default abilities for our character by
overloading the GiveAbilities() function. We also add the DefaultAbilities array to store the default
abilities for the character.

Notice that we use the UPROPERTY macro to apply EditDefaultOnly to our components. This will later
allow us to modify these components in the UE5 editor for our character's blueprint, so we can
dynamically add and remove attributes and abilities for our player without modifying the code each
time.

{
	// If the ASC and DefaultAttributeEffect objects are valid
	if (AbilitySystemComponent && DefaultAttributeEffect)
	{
		// Create context object for this gameplay effecct
		FGameplayEffectContextHandle EffectContext = AbilitySystemComponent->MakeEffectContext();
		EffectContext.AddSourceObject(this);

		// Create an outgoing effect spec using the effect to apply and the context
		FGameplayEffectSpecHandle SpecHandle = AbilitySystemComponent-
>MakeOutgoingSpec(DefaultAttributeEffect, 1, EffectContext);

		if (SpecHandle.IsValid())
		{
			// Apply the effect using the derived spec
			// + Could be ApplyGameplayEffectToTarget() instead if we were shooting a target
			FActiveGameplayEffectHandle GEHandle = AbilitySystemComponent-
>ApplyGameplayEffectSpecToSelf(*SpecHandle.Data.Get());
		}
	}
}

// ThirdPersonCharacter.h
UCLASS()
class UNREALGAME5_API AThirdPersonCharacter : public ACharacter, public IAbilitySystemInterface
{
	GENERATED_BODY()

public:
	// GAS declarations

	// Define components to store ASC and attributes

And we define GiveAbilities below to handle the allocation of default abilities to our character.

For the next step, we need to override PossessedBy and OnRep_PlayerState() to define how to update
the server and client of the player state respectively.

	UPROPERTY(VisibleAnywhere, BlueprintReadOnly, Category = "GAS")
	class UGAS_AbilitySystemComponent* AbilitySystemComponent;
	UPROPERTY(VisibleAnywhere, BlueprintReadOnly, Category = "GAS")
 class UGAS_AttributeSet* Attributes;

	virtual class UAbilitySystemComponent* GetAbilitySystemComponent() const override;
	// Overload to initialize attributes for GAS, and component to store default attributes
	virtual void InitializeAttributes();
	UPROPERTY(BlueprintReadOnly, EditDefaultOnly, Category = "GAS")
 TSubclassOf<class UGameplayEffect> DefaultAttributeEffect;

	// Overload to initialize abilities for GAS, and component to store default abilities
	virtual void GiveAbilities();
	UPROPERTY(BlueprintReadOnly, EditDefaultOnly, Category = "GAS")
	TArray<TSubclassOf<class UGAS_GameplayAbility>> DefaultAbilities;
public:	
// more code....

// ThirdPersonCharacter.cpp
void AThirdPersonCharacter::GiveAbilities()
{
	// If the server has the authority to grant abilities and there is a valid ASC
	if (HasAuthority() && AbilitySystemComponent)
	{
		// Foreach ability in DefaultAbilities, grant the ability
		for (TSubclassOf<UGAS_GameplayAbility>& StartupAbility : DefaultAbilities)
		{
			// `1` below is the level of the ability, which could later be used to allow abilities to scale with player level
			AbilitySystemComponent->GiveAbility(
				FGameplayAbilitySpec(StartupAbility, 1, static_cast<int32>(StartupAbility.GetDefaultObject()->AbilityInputID),
this));
		}
	}
}

And see the definitions for these functions below

// ThirdPersonCharacter.h
UCLASS()
class UNREALGAME5_API AThirdPersonCharacter : public ACharacter, public IAbilitySystemInterface
{
	GENERATED_BODY()

public:
	// GAS declarations

	// Define components to store ASC and attributes
	UPROPERTY(VisibleAnywhere, BlueprintReadOnly, Category = "GAS")
	class UGAS_AbilitySystemComponent* AbilitySystemComponent;
	UPROPERTY(VisibleAnywhere, BlueprintReadOnly, Category = "GAS")
 class UGAS_AttributeSet* Attributes;

	virtual class UAbilitySystemComponent* GetAbilitySystemComponent() const override;
	// Overload to initialize attributes for GAS, and component to store default attributes
	virtual void InitializeAttributes();
	UPROPERTY(BlueprintReadOnly, EditDefaultOnly, Category = "GAS")
 TSubclassOf<class UGameplayEffect> DefaultAttributeEffect;

	// Overload to initialize abilities for GAS, and component to store default abilities
	virtual void GiveAbilities();
	UPROPERTY(BlueprintReadOnly, EditDefaultOnly, Category = "GAS")
	TArray<TSubclassOf<class UGAS_GameplayAbility>> DefaultAbilities;
public:	
// more code....

// ThirdPersonCharacter.cpp
void AThirdPersonCharacter::PossessedBy(AController* NewController)
{
	Super::PossessedBy(NewController);

	// Owner and Avatar are bother this character
	AbilitySystemComponent->InitAbilityActorInfo(this, this);

	InitializeAttributes();
	GiveAbilities();

As a final modification, add the following code to the function equivalent to
ThirdPersonCharacter::SetupPlayerInputComponent() in your project. This is the same code as the last
portion of OnRep_PlayerState

And just to be sure we have all the headers we need, here are the final includes for my character

}

void AThirdPersonCharacter::OnRep_PlayerState()
{
	Super::OnRep_PlayerState();

	AbilitySystemComponent->InitAbilityActorInfo(this, this);
	InitializeAttributes();

	if (AbilitySystemComponent && InputComponent)
	{
		// Where the 3rd parameter is a string equal to enum typename defined in unrealgame5.h
		const FGameplayAbilityInputBinds Binds("Confirm", "Cancel", "EGASAbilityInputID",
static_cast<int32>(EGASAbilityInputID::Confirm), static_cast<int32>(EGASAbilityInputID::Cancel));
		AbilitySystemComponent->BindAbilityActivationToInputComponent(InputComponent, Binds);
	}
}

void AThirdPersonCharacter::SetupPlayerInputComponent(UInputComponent* PlayerInputComponent)
{
	// Code unrelated to GAS...
	// ...

	// Make sure GAS is valid along with player input component
	if (AbilitySystemComponent && InputComponent)
	{
		// Where the 3rd parameter is a string equal to enum typename defined in unrealgame5.h
		const FGameplayAbilityInputBinds Binds("Confirm", "Cancel", "EGASAbilityInputID",
static_cast<int32>(EGASAbilityInputID::Confirm), static_cast<int32>(EGASAbilityInputID::Cancel));
		AbilitySystemComponent->BindAbilityActivationToInputComponent(InputComponent, Binds);
	}
}

// ThirdPersonCharacter.h
// GAS includes

At this point we have configured GAS for our project and our character, so we're ready to start
defining our abilities!

In my assets folder, I just created an Abilities subdirectory and continued with the steps below,
creating the assets within this directory.

First I created a new Blueprint Class using the editor and derived from the GameplayEffect class.
Applying this effect will result in the player or character being granted a set of default abilities.

#include "AbilitySystemInterface.h"
#include <GameplayEffectTypes.h>
#include "GAS_AbilitySystemComponent.h"
#include "GAS_GameplayAbility.h"
#include "GAS_AttributeSet.h"

#include "CoreMinimal.h"
#include "GameFramework/Character.h"
#include "ThirdPersonCharacter.generated.h"

// ThirdPersonCharacter.cpp
// All content (c) Shaun Reed 2021, all rights reserved

#include "ThirdPersonCharacter.h"

// Custom includes (Not related to GAS)
#include "ActorSpawner.h" // Fireball spawner object
#include "BallActor.h" // Fireball object

// Includes for GAS
#include "../unrealgame5.h"

// Engine includes
#include "Kismet/GameplayStatics.h" // For spawning fireball static mesh
#include "Camera/CameraComponent.h"
#include "GameFramework/SpringArmComponent.h"
#include "GameFramework/CharacterMovementComponent.h"

Defining Abilities

Default Abilities

I named this GE_CharacterDefaults , and opened it for editing. The screenshot below contains all
settings I modified under the Class Defaults panel. If it isn't in this screenshot, I didn't change it.

https://knoats.com/uploads/images/gallery/2022-01/image-1642618895337.png

Then I opened my BP_ThirdPersonCharacter blueprint for editing and applied the following settings
within the details panel. You should notice at this point that the DefaultAttributeEffect and
DefaultAttributes in this screenshot are actually the components we exposed to the editor in our
ThirdPersonCharacter.h file earlier with UPROPERTY and EditDefaultsOnly .

https://knoats.com/uploads/images/gallery/2022-01/image-1642619166479.png

To prove the system is working, create a new blueprint that derives from GameplayEffect and apply
the settings below

Then, in the event chart for your BP_ThirdPersonCharacter add a BeginPlay node and apply the
damage when the game starts.

Damage Effect

https://knoats.com/uploads/images/gallery/2022-01/image-1642620733145.png
https://knoats.com/uploads/images/gallery/2022-01/image-1642620096481.png

Hit play and then open a console and type showdebug abilitysystem to see that your HP should now
be 80 on the lefthand side. Remove the damage to your player when youre done testing, but you
can keep the GE_Damage asset around to use it later.

First, open the animation blueprint for your character and add a montage Slot 'DefaultSlot' to your
anim graph. For me, the screen looks like the below after the changes have been made. Make sure
to save and apply these changes.

Attack Ability

https://knoats.com/uploads/images/gallery/2022-01/image-1642620207711.png

Make a new blueprint deriving from the GAS_GameplayAbilitiy class that we defined earlier.

https://knoats.com/uploads/images/gallery/2022-01/image-1642620498605.png

I named this GA_Attack and opened it for editing.

Make sure the Ability Input ID matches the input action we want the ability to be mapped to. This is
found under the details panel.

https://knoats.com/uploads/images/gallery/2022-01/image-1642619331071.png
https://knoats.com/uploads/images/gallery/2022-01/image-1642619555930.png

Next, open GA_Attack for editing and add the following blueprint nodes. Add the GetActorInfo node
in the context menu in the screenshot, be sure to uncheck 'Context Sensitive' if it isn't appearing at
first.

Now right click the GetActorInfo node and select Split Struct Pin to split the actor into its components

https://knoats.com/uploads/images/gallery/2022-01/image-1642638033467.png
https://knoats.com/uploads/images/gallery/2022-01/image-1642638307704.png
https://knoats.com/uploads/images/gallery/2022-01/image-1642638381872.png

And connect the skeletal mesh pins to finish the blueprint for GA_Attack

Under the Montage To Play pin on the Play Montage node, you may not have a montage available for
your skeleton.

If you also don't have an animation, check out Mixamo for a free anmation and see the page on
Retargeting Skeleton Animations

Then create a montage by watching this quick youtube video. If you're doing a simple punch
animation, you probably just need to create a montage and click and drag the animation into the
center of the screen and save. It's pretty simple, but you can use Motages to do some pretty neat
things. Maybe for the first montage try making a one-off animation that doesn't loop like punching
or a grab motion for interactions.

Once you have the montage made, select it here in this node, and then play the game. You'll now
be able to see your character performing the attack!

At a higher level, the steps for adding a new ability are below

1. Add the input action to the enum defined in unrealgame5.h (AKA <YOUR_PROJECT_NAME>.h)
2. Recompile in the editor or within the IDE of your choice
3. Restart the editor
4. Create a blueprint deriving from GAS_GameplayAbility
5. Define the ActivateAbilitiy event for this new blueprint, and assign an Ability Input ID within

the Details panel
6. Create a new Animation Montage for the ability, if needed (and assign to play on

ActivateAbility event)
7. Grant the abilitiy under the Details tab in the Default Abilities section while editing the

BP_ThirdPersonCharacter blueprint
8. Add the input action to your project under Edit->Input if it doesn't already exist

Additional Abilities

https://knoats.com/uploads/images/gallery/2022-01/image-1642638429487.png
https://www.mixamo.com/#/
https://knoats.com/books/game-development/page/retarget-skeleton-animations
https://youtu.be/MhMJt3VWfk0

To see useful information on the GAS, enter play mode and hit the tilde (~) key to open a console.
Then, type showdebug abilitysystem , and youll notice you can see your character stats even if there's
no UI elements to represent them yet.

Debugging

Revision #7
Created 19 January 2022 15:57:58 by Shaun Reed
Updated 21 August 2022 22:34:59 by Shaun Reed

https://knoats.com/uploads/images/gallery/2022-01/image-1642619759887.png

