
Using the default configuration for a keyboard&mouse / Gamepad Input Actions asset in unity, we
can implement universal controls given various input devices.

New Input System

Setup

Issues getting an input device to work? Click Window->Analysis->Input Debugger and at the top-
left of the new window select Options->Add Devices Not Listed in 'Supported Devices' and any input
device that was not previously working should now be passing input to unity.

This was a weird bug for me to figure out, so I thought it was worth a mention. For me, I had
to do this in order to get Unity to accept input from my Corsair gaming mouse. I searched up
a lot of information on this new input system thinking I was using it wrong, and later found
that my mouse was not passing input to unity and my code was correct.

https://knoats.com/uploads/images/gallery/2021-04/image-1618853283926.png

We can call a specific function from a specific component

Using PlayerInput component->Behavior->Invoke Unity Events -

Use

 Rigidbody playerRigidbody;
 public PlayerControls controls;
 Vector2 playerVelocity;
 public float playerSpeed = 5.0f;

 void Awake() {
 playerRigidbody = GetComponent<Rigidbody>();
 controls = new PlayerControls();
 }

 void OnEnable() {
 controls.Player.Enable();
 }

 void OnDisable() {
 controls.Player.Disable();
 }

 public void OnMove(InputAction.CallbackContext context) {
 print("Moving: " + context.ReadValue<Vector2>());
 playerVelocity = context.ReadValue<Vector2>();
 }

 public void OnLook(InputAction.CallbackContext context) {

https://knoats.com/uploads/images/gallery/2021-04/image-1618853641994.png

Or we can let Unity call functions defined using the naming convention void
On\[ActionName\](InputValue value)

Using PlayerInput component->Behavior->Send Messages -

 print("Look: " + context.ReadValue<Vector2>());
 }

 public void OnFire(InputAction.CallbackContext context) {
 print("Bang");
 }

 void Update()
 {
 playerRigidbody.position += new Vector3(playerVelocity.x * Time.deltaTime * playerSpeed,
 0,
 playerVelocity.y * Time.deltaTime * playerSpeed);
 }

 Rigidbody playerRigidbody;
 public PlayerControls controls;
 Vector2 playerVelocity;
 public float playerSpeed = 5.0f;

 void Awake() {
 playerRigidbody = GetComponent<Rigidbody>();
 controls = new PlayerControls();
 }

 void OnEnable() {
 controls.Player.Enable();
 }

 void OnDisable() {
 controls.Player.Disable();
 }

 public void OnMove(InputValue value) {
 playerVelocity = value.Get<Vector2>();

Broadcast messages is the same as Send Messages, except broadcasting invokes the same
methods on all child objects who have a component with function definitions that match this
naming convention.

 print("Moving: " + value.Get<Vector2>());
 }

 public void OnMove(InputValue value) {
 playerVelocity = value.Get<Vector2>();
 print("Moving: " + value.Get<Vector2>());
 }

 void Update()
 {
 playerRigidbody.position += new Vector3(playerVelocity.x * Time.deltaTime * playerSpeed,
 0,
 playerVelocity.y * Time.deltaTime * playerSpeed);
 }

Revision #2
Created 19 April 2021 17:19:08 by Shaun Reed
Updated 19 April 2021 17:37:30 by Shaun Reed

