Basics

First, check out this brief explanation on what Git is, why it was created, and general descriptions

of features or ideas Git is built around. This will help a lot to understand the commands you are
using, instead of just searching for a command that does something favorable. You will gain a lot of
context by reading this page.

If you are new to git entirely, I'd recommend checking out this interactive tutorial to learn git

branching and running through the examples they host there. This will get you working with Git
quickly in various situations and difficulties. After this, you will have some experience with Git!

The Git-scm Book is a good read and also serves as a great online reference. Once you have an
idea of what you are loooking for and where you need further your understanding, this will be
useful to you.

And when all else fails, ohshitgit outlines what to do in a few oh shit, | fucked up scenarios. dangitgit
is the same reference, without the bad language and thus is more suitable to leave up on a work
monitor or to share in a presentation.

Create a Repository

To create a repository, just create a directory or enter the root directory of the project you want to
turn into a repository, and type gitinit . This initializes the directory as a local repository. To add the
repository to GitHub and track it remotely, you'll need to login to GitHub and click 'New Repository’,
name the repository the same as your root folder and continue. GitHub will provide you with the
rest of the instructions, but for completeness, tweak the lines below to push your local repository to
your new remote on GitHub -

git remote add origin git@github.com:<username>/<reponame>.git

git push -u origin master

We just created the origin remote. This is the remote that is displayed and tracked on GitHub,
when you clone your repository you are on a local remote, which means until you git push <remote>
<branch> your changes will only be saved and tracked on your local machine.

Using a remote via SSH such as the above git@github.com:<username>/<reponame>.git requires you
have configured an SSH key with your GitHub account that is associated with the machine you are

pushing from. If you haven't already, check out Creating SSH Login Keys and simply cat

~/.ssh/<USERKEY>.pub the public key of your user and copy it over into your GitHub settings.

https://tom.preston-werner.com/2009/05/19/the-git-parable.html
https://learngitbranching.js.org
https://learngitbranching.js.org
https://git-scm.com/book/en/v2/
https://www.ohshitgit.com
https://dangitgit.com/
https://www.knoats.com/link/14#bkmrk-creating-ssh-login-k

If you'd rather not mess with things like this, see how to create a Person Access Token below.

Ignoring Files

Within a Git repository, .gitignore files can be seen specifying a list of files or directories that Git
should ignore when tracking changes. For example, this is useful when a project is expected to
contain build files generated after being cloned. We would not want the user to then make a
commit publishing the files they generated when building the project for their system, we would
want to provide a clean slate for the next person that clones the project.

After creating a .gitignore file, the syntax below can be followed to specify files and directories to
be ignored.

ignore all .a files

*.a

but do track lib.a, even though you're ignoring .a files above

'lib.a

only ignore the TODO file in the current directory, not subdir/TODO
/TODO

ignore all files in any directory named build

build/

ignore doc/notes.txt, but not doc/server/arch.txt

doc/*.txt

ignore all .pdf files in the doc/ directory and any of its subdirectories

doc/**/*.pdf

44 Git-scm - Ignoring Files

Check out GitHub - gitignore repo for some templates used in popular languages, like C, C++, or

Python.

If you are ignoring a file that Git has already previously tracked, it may be necessary to remove the
file (or directory) from Git's cache using the command below

https://www.knoats.com/link/65#bkmrk-alternatively%2C-you-c
https://github.com/github/gitignore
https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#_ignoring

Remove cached file

git rm --cached path/to/file
Remove cached directory
git rm -r --cached path/to/
Remove all cached files

git rm -r --cached .

Commit Guidelines

Before you commit, run git diff --check , which identifies possible whitespace errors and lists them for
you.

Write your commit message in the imperative: "Fix bug" and not "Fixed bug"
or "Fixes bug." This convention matches up with commit messages generated
by commands like git merge and git revert.

Use git add --patch to partially stage files (covered in detail in https://git-scm.com/book/en/v2/Git-
Tools-Interactive-Staging# _interactive staging)

The project snapshot at the tip of the branch is identical whether you do one commit or five, as
long as all the changes are added at some point

As a general rule, your commit messages should start with a single line that’s no more than about
50 characters and that describes the changeset concisely, followed by a blank line, followed by a
more detailed explanation

git log --pretty=oneline shows a terse history mapping containing the commit id and the summary

If the config option merge.summary is set, the summaries from all merged commits will make their
way into the merge commit message

44 git pull -rebase What’s happening here? Git will rewind (undo) all of your local
commits, pull down the remote commits then replay your local commits on top
of the newly pulled remote commits. If any conflicts arise that git can’t handle
you’ll be given the opportunity to manually merge the commits then simply run
git rebase --continue to carry on replaying your local commits.

How to Avoid Merge Commits in Git - Kernowsoul

git shortlog uses summary lines in the changelog-like output it produces -
git format-patch , git send-email , and related tools use it as the subject for emails.

http://kernowsoul.com/blog/2012/06/20/4-ways-to-avoid-merge-commits-in-git/

Reflogs, a local history accessible with git reflog , is intended to help you recover from stupid
mistakes by providing the hashes along with output similar to git shortlog .

Reversing Changes

Use git reset <remote> for local changes -

one commit in the past

git reset HEAD™

2 commits in the past

git reset HEAD™ "™

2 commits in the past

git reset HEAD~2

3 commits in the past

git reset HEAD~3

Use git revert <remote> for changes that have already been pushed to a remote -

1 commit in the past

git revert HEAD

2 commit in the past

git revert HEAD™

3 commits in the past

git revert HEAD™ "

3 commits in the past

git revert HEAD~2

4 commits in the past

git revert HEAD~3
Note that HEAD could be replaced with v0.2, or any active branch that exists on the remote

Modifying Previous Commits

WIP

For now, Here's a good tutorial

git rebase --interactive --autosquash --rebase-merges --root master

Revision #22
Created 19 July 2019 03:11:51 by Shaun Reed
Updated 18 December 2021 18:37:27 by Shaun Reed

https://www.mikulskibartosz.name/git-fixup-explained/

