
If we run ... git push <remote> serverfix
Git automatically expands the serverfix branchname out to refs/heads/serverfix:refs/heads/serverfix ,
where the sytax is local:remote ..

You can use this same syntax when pusshing a local branch into a remote branch that is named
differently. If you didn’t want it to be called serverfix on the remote, you could instead run git push
origin serverfix:awesomebranch to push your local serverfix branch to the awesomebranch branch on the
remote project.

Should you see the errors below when attempting to push, see the Pull / Merge > Resolving
Conflicts section of this page for steps on merging your branches, resolving the conflicts, and then
completing your push.

*You should also be able to share your branches by pushing them to a shared server, working with
others on shared branches and rebasing your branches before they are shared. This being said, it’s
possible to have a workflow where each developer has write access to their own public repository
and read access to everyone else’s -

1. The project maintainer pushes to their public repository.
2. A contributor clones that repository and makes changes.
3. The contributor pushes to their own public copy.
4. The contributor sends the maintainer an email asking them to pull changes.
5. The maintainer adds the contributor’s repository as a remote and merges locally.
6. The maintainer pushes merged changes to the main repository.

Pushing / Merging Branches
Pushing

git push origin v0.2

To github.com:shaunrd0/CMake.git
! [rejected] v0.2 -> v0.2 (non-fast-forward)
error: failed to push some refs to 'git@github.com:shaunrd0/CMake.git'
hint: Updates were rejected because the tip of your current branch is behind
hint: its remote counterpart. Integrate the remote changes (e.g.
hint: 'git pull ...') before pushing again.
hint: See the 'Note about fast-forwards' in 'git push --help' for details.

Shared Remote Server Workflow

Basic git branch commands -

Checkout and create new branch if it doesnt exist

git log --all --graph --decorate --oneline --simplify-by-decoration will output your history in a format similar to
the Network Graph on GitHub

The output can be formatted further, and linked with aliases within git -

There are also other simpler options for similar output with less information -

Alternatively, if you would rather a GUI - run gitk - provided it's configured correctly.

To delete a branch, local or remote, see the commands below -

Remove a local branch

Remove a remote branch. Be careful with this command! Be sure you know that you want to delete
the branch forever.

Branching

git checkout -b branchname

git log --all --graph --decorate --oneline --simplify-by-decoration

* 8221652 (HEAD -> master, origin/master, origin/HEAD) merge v0.4 into master
* 27e6e1c (origin/v0.4, v0.4) Fix for tab spacing in vim
| * feb1da1 (refs/stash) WIP on master: 807e0b3 Reorganized C problem 4
|/
* 807e0b3 (origin/v0.3) Reorganized C problem 4
* 2fc4266 (origin/v0.2) Finishing up v0.2
| * 9187276 (origin/v0.1) Cleaned up the README.
|/
* f1b858b Initial commit of first CMake project

git config --global alias.lg "log --all --graph --pretty=format:'%Cred%h%Creset -%C(yellow)%d%Creset %s
%Cgreen(%cr) %C(bold blue)<%an>%Creset' --abbrev-commit"

git show-branch
git show-branch --all

git branch -d the_local_branch

Before merging, commit and push a 'checkpoint' to your version or feature branch. If you do not,
git will squash the history from your branch into master - this commit can serve as a reference for
changes merged into master later on. Should you forget to do this, the merge could still be traced
with more effort.

merge master into the test first to resolve any conflicts on the test branch itself. After the test
branch is clean, up-to-date, and pushed to origin, I'll git checkout master and git merge test .

git merge origin/master . If you want to fast-forward, run git merge --ff-only origin/master

The --squash option takes all the work on the merged branch and squashes it into one changeset
producing the repository state as if a real merge happened, without actually making a merge
commit.

Also the --no-commit option can be useful to delay the merge commit in case of the default merge
process.

Problems pushing your local changes to a remote (origin) ?
git pull <remote> <branch> and resolve the conflicts by following the instructions below .

When attempting to pull or merge branches, there can sometimes be new changes to the same
content within the same files on the two different branches. Since git wants to be sure that you
retain the changes you want, it pauses our merge and prompts us to resolve these conflicts before
creating a final commit to finish our merge.

Below, we can see that my branch has conflicts with 4-Ch2-course-launcher/CMakeLists.txt - So, to
resolve these, we would run vim 4-Ch2-course-launcher/CMakeLists.txt

git push origin :the_remote_branch
git push origin --delete the_remote_branch

Pull / Merge

Resolving Conflicts

git pull origin v0.2

From github.com:shaunrd0/CMake
* branch v0.2 -> FETCH_HEAD
Auto-merging 4-Ch2-course-laucher/CMakeLists.txt
CONFLICT (content): Merge conflict in 4-Ch2-course-laucher/CMakeLists.txt
CONFLICT (add/add): Merge conflict in 4-Ch2-course-laucher/4-problems/CMakeLists.txt
Auto-merging 4-Ch2-course-laucher/4-problems/CMakeLists.txt
Automatic merge failed; fix conflicts and then commit the result.

vim <path/to/conflict/file> and you will notice syntax similar to the below has been added to your file -

All that Git is asking us to do here is delete the changes that we don't wish to keep, and then git
commit -m "Commit message" to complete our merge. If you want to abort the merge, run git status to
see how, or just run git merge --abort .

So, in this case if we wish to keep the changes that are on our local HEAD , and overwrite the
changes on our feature-branch . Just modify the file, deleting all of the added syntax from the merge
conflicts described by git, and any changes that may go with them -

Our merge conflict is resolved. check git status , stage your changes with git add and make the
commit to finish the merge.

On branch v0.2
You have unmerged paths.
 (fix conflicts and run "git commit")
 (use "git merge --abort" to abort the merge)

Unmerged paths:
 (use "git add <file>..." to mark resolution)

 added: 4-Ch2-course-laucher/4-problems/CMakeLists.txt
	both modified: 4-Ch2-course-laucher/CMakeLists.txt

no changes added to commit (use "git add" and/or "git commit -a")

Some text in a file that has no conflict.

<<<<<<< HEAD
Some text that was changed on the local HEAD.
=======
Some text that was also changed on the remote we are attempting to merge with
>>>>>>> feature-branch

Some more text in a file that has no conflict.

Some text in a file that has no conflict.

Some text that was changed on the local HEAD.

Some more text in a file that has no conflict.

Revision #6
Created 28 June 2020 14:23:16 by Shaun Reed
Updated 18 December 2021 22:44:22 by Shaun Reed

