
i3
Installing Fonts
Mount Google Drive
tmux
Yakuake

Customization

i3 is a tiling window manager. See i3 User Guide for official documentation.

Also see my notes below on various settings, modules, etc

Because this is such a broad topic, I'll put some links here for the sources I used to configure my
own Manjaro Linux system running the i3wm and polybar.

Alsa / Volume Mixers - Cannot find simple element

Vim Unicode Plugin

Inserting Unicode Characters Into Vim

Polybar Module Documentation

i3 has been altered for various reasons and you may want a different version, i3-gaps is a popular
choice right now as it leaves a configurable amount of space between your windows that gives
some visual relief to your workspace. It looks nice, depending on your opinion. To check it out,
you'll need to REMOVE i3 and reinstall using an alternate version. Run the following commands -

Some basic i3-gaps configurations / settings taken from My Dotfiles Repo -

i3

i3-gaps

sudo apt-get install software-properties-common
Head over to https://launchpad.net/ubuntu/+ppas?name_filter=i3-gaps and pick one.
I chose https://launchpad.net/~kgilmer/+archive/ubuntu/speed-ricer as it was recommended by the owner /
maintainer of i3 on GitHub.

Run the following command to add the PPA to your system (DEBIAN ONLY)
#+ If you are on arch, just use yay AUR manager.
sudo add-apt-repository ppa:kgilmer/speed-rice
sudo apt update
sudo apt install i3-gaps

https://i3wm.org/docs/userguide.html#resizingconfig
https://github.com/polybar/polybar/issues/491
https://github.com/chrisbra/unicode.vim
https://x-team.com/blog/inserting-unicode-characters-in-vim/
https://github.com/polybar/polybar/wiki/Module:-i3
https://github.com/shaunrd0/dot/

###
Settings for i3-gaps
###

Set inner/outer gaps default values
gaps inner 14
gaps outer -2

Additionally, you can issue commands with the following syntax. This is useful to bind keys to changing the
gap size.
gaps inner|outer current|all set|plus|minus <px>
gaps inner all set 10
gaps outer all plus 5

Smart gaps (gaps used if only more than one container on the workspace)
smart_gaps on

Smart borders (draw borders around container only if it is not the only container on this workspace)
on|no_gaps (on=always activate and no_gaps=only activate if the gap size to the edge of the screen is 0)
smart_borders on

Press $mod+Shift+g to enter the gap mode. Choose o or i for modifying outer/inner gaps. Press one of + / -
(in-/decrement for current workspace) or 0 (remove gaps for current workspace). If you also press Shift with
these keys, the change will be global for all workspaces.
set $mode_gaps Gaps: (o) outer, (i) inner
set $mode_gaps_outer Outer Gaps: +|-|0 (local), Shift + +|-|0 (global)
set $mode_gaps_inner Inner Gaps: +|-|0 (local), Shift + +|-|0 (global)
bindsym $mod+Shift+g mode "$mode_gaps"

mode "$mode_gaps" {
 bindsym o mode "$mode_gaps_outer"
 bindsym i mode "$mode_gaps_inner"
 bindsym Return mode "default"
 bindsym Escape mode "default"
}
mode "$mode_gaps_inner" {
 bindsym plus gaps inner current plus 5
 bindsym minus gaps inner current minus 5
 bindsym 0 gaps inner current set 0

X11 can help configure media keys on laptops and aftermarket keyboards to pair with their
intended use by running a command or action when pressed. This can seem confusing to configure,
and may be time consuming at first but once you get the hang of it and know where to look it isn't
all that bad. There is a GUI tool if you'd prefer to use it, but Ill still show how to do this via a
terminal below.

Through a terminal -

 bindsym Shift+plus gaps inner all plus 5
 bindsym Shift+minus gaps inner all minus 5
 bindsym Shift+0 gaps inner all set 0

 bindsym Return mode "default"
 bindsym Escape mode "default"
}
mode "$mode_gaps_outer" {
 bindsym plus gaps outer current plus 5
 bindsym minus gaps outer current minus 5
 bindsym 0 gaps outer current set 0

 bindsym Shift+plus gaps outer all plus 5
 bindsym Shift+minus gaps outer all minus 5
 bindsym Shift+0 gaps outer all set 0

 bindsym Return mode "default"
 bindsym Escape mode "default"
}

Xkeybinds

Install and use GUI xbindkeys-config tool on debian
sudo apt install xbindkeys-config
xbindkeys-config
Use the GUI to set an action (command) to be performed for each key in the list

Capture next keypress and output keycode information to console
xbindkeys --key

Take the above output into your clipboard and vim ~/.xbindkeysrc to add the commands needed.
Below, I configure media keys for volume functionality -

Press combination of keys or/and click under the window.
You can use one of the two lines after "NoCommand"
in $HOME/.xbindkeysrc to bind a key.
"(Scheme function)"
 m:0x0 + c:75
 F9

OR

Capture next multi-keypress and output keycode information to console
xbindkeys --multikey
Press combination of keys or/and click under the window.
You can use one of the two lines after "NoCommand"
in $HOME/.xbindkeysrc to bind a key.
Press combination of keys or/and click under the window.
You can use one of the two lines after "NoCommand"
in $HOME/.xbindkeysrc to bind a key.

--- Press "q" to stop. ---
"(Scheme function)"
 m:0x1 + c:75
 Shift + F9
This will continue to capture until you press Q.

#~/.xbindkeysrc
#

#Volume Up
"pactl set-sink-volume @DEFAULT_SINK@ +10%"
 m:0x0 + c:76
 F10

#Volume Down
"pactl set-sink-volume @DEFAULT_SINK@ -10%"
 m:0x0 + c:75
 F9

Thats it! Above, you could change the pactl set-sink-mute commands to anything youd like to
happen when the F8-10 keys are pressed. After you're done, apply your changes by running
xbindkeys --poll-rc

ArchWiki Resource

If you're having issues using certain keys, try the xev command. There will be a lot more output
than what xbindkeys --key provides, but if pushing the key doesn't send output to xev then your
system is handling the button independent from your OS.

Additionally, you can run xbindkeys_show to show the current settings applied with xbindkeys . This is
useful when debugging to verify you have applied settings correctly and none are being
overwritten or modified.

run sudo ls /sys/class/backlight - if you see intel_backlight there you are in luck, follow the steps below
to configure xbacklight to adjust your display brightness.

#Toggle Audio
"pactl set-sink-mute @DEFAULT_SINK@ toggle"
 m:0x0 + c:74
 F8

Backlight

sudo apt install xbacklight
sudo vim /etc/X11/xorg.conf
If the above file doesnt exisit, make it.
If it does, append the lines below
Section "Device"
 Identifier "Intel Graphics"
 Driver "intel"
 Option "Backlight" "intel_backlight"
EndSection
Save and exit, reboot your PC or logout of your xsession and login again.

Now the below commands should work and can be bound to any key the same way we bound volume keys in
the section above
Decrease brightness by 10%
xbacklight -dec 10
Increase brightness by 10%
xbacklight -inc 10

https://wiki.archlinux.org/index.php/Xbindkeys

Alternately, brightnessctl can be used to control the backlight. Run the following commands,
replacing <YOUR_USERNAME> with the user on your system that you want to use to control
backlight. For me, this was just my primary user, kapper .

Then after a reboot we can run the following command to decrese brightness by 10%

Or to increase brightness by 10%

Useful commands / tools for handling desktop notification dialogs -

git clone https://github.com/Hummer12007/brightnessctl
cd brightnessctl
sudo ./configure && sudo make install
sudo usermod -aG video <YOUR_USERNAME>

brightnessctl s 10%-

Updated device 'intel_backlight':
Device 'intel_backlight' of class 'backlight':
 Current brightness: 14400 (15%)
 Max brightness: 96000

brightnessctl s +10%

Updated device 'intel_backlight':
Device 'intel_backlight' of class 'backlight':
 Current brightness: 24000 (25%)
 Max brightness: 96000

Notification Systems

Install, use notify-send
sudo apt install libnotify-bin
notify-send "Test Notification"

Install kdeconnect for connecting mobile devices on the same network which have been paired using
kdeconnect-cli
sudo apt install kdeconnect

https://github.com/Hummer12007/brightnessctl

Polybar is a simple community driven solution to configuring custom status bars. Generally,
configurations are handled within the ~/.config/polybar/config file, but some specific cases may
require editing other files.

The general requirements of using Polybar is installation via your package manager, for me, this is
pacman . After installing, we need to define our polybars, then configure i3 to handle these settings
for us.

Optionally, polybar can be built from source by running the following commands. This was tested
and worked for me on Ubuntu 20.04.

Be sure to download the KDEconnect app on your mobile device in your respective app store and connect to
the same Wi-Fi network as your PC

list devices with KDEconnect on your network
kdeconnect-cli -l --id-name-only
13b9d56df4c8815b KapperDroid
kdeconnect-cli -l --id-only
13b9d56df4c8815b

Given the ID corresponding with the name you chose for your device within the KDEconmnect app...
kdeconnect-cli --pair -d 13b9d56df4c8815b
Pair requested
Check the KDEconnect app on your phone for the prompt, you may have to open the app and navigate to the
side panel -> 'Add new device'

See help text
kdeconnect-cli -h

Polybar

sudo pacman -Syu polybar

sudo apt install build-essential git cmake cmake-data pkg-config python3-sphinx python3-packaging libuv1-dev
libcairo2-dev libxcb1-dev libxcb-util0-dev libxcb-randr0-dev libxcb-composite0-dev python3-xcbgen xcb-proto
libxcb-image0-dev libxcb-ewmh-dev libxcb-icccm4-dev libxcb-xkb-dev libxcb-xrm-dev libxcb-cursor-dev
libasound2-dev libpulse-dev i3-wm libjsoncpp-dev libmpdclient-dev libcurl4-openssl-dev libnl-genl-3-dev
git clone git@github.com:polybar/polybar.git
cd polybar

https://github.com/polybar/polybar

After installing, we need to configure our bars within ~/.config/polybar/config , then we can simply run
polybar top to run a polybar titled top within said config file.

To start, a default ~/.config/i3/config will contain a block defining the i3status and its settings

We are going to remove this, or comment it all out, and replace it with the exec_always line below.
Now copy the start-polybar.sh script to ~/.config/polybar/ for use with i3 startup configuration below.
This is just telling i3 that we are starting Polybar from a script we've written and stored within the
~/.config/polybar/

./build.sh

Configure i3 for Polybar

bar {
	i3bar_command i3bar
	status_command i3status
	position bottom

please set your primary output first. Example: 'xrandr --output eDP1 --primary'
	tray_output primary
	tray_output eDP1

	bindsym button4 nop
	bindsym button5 nop
 font xft:URWGothic-Book 11
	strip_workspace_numbers yes

 colors {
 background #222D31
 statusline #F9FAF9
 separator #454947

 border backgr. text
 focused_workspace #F9FAF9 #16a085 #292F34
 active_workspace #595B5B #353836 #FDF6E3
 inactive_workspace #595B5B #222D31 #EEE8D5
 binding_mode #16a085 #2C2C2C #F9FAF9
 urgent_workspace #16a085 #FDF6E3 #E5201D
 }
}

directory on initial startup.

My bar { ... } define within ~/.config/i3/config -

Now just press the <Mod><Shift><R> (i3 default setting) to reload i3 and your Polybars should start
up instead of the default i3status

For example, my ~/.config/polybar/config -

Custom startup apps
exec_always --no-startup-id $HOME/.config/polybar/start-polybar.sh

Don't use i3 status bar, comment out this block or remove it entirely
#bar { }

Define Polybars / Modules

[bar/top]
monitor = ${env:MONITOR}
width = 100%
height = 34
background = #00000000
foreground = #ccffffff
line-color = ${bar/bottom.background}
line-size = 16
spacing = 2
padding-right = 5
module-margin = 4
font-0 = NotoSans-Regular:size=8;-1
font-1 = MaterialIcons:size=10;0
font-2 = Termsynu:size=8:antialias=false;-2
font-3 = FontAwesome:size=10;0
font-4 = Unifont:size=8;0
modules-left = powermenu
modules-center = ki3
modules-right = volume wired-network clock

[bar/bottom]
monitor = ${env:MONITOR}
bottom = true

These first two blocks define our top and bottom status bars. Continuing on in the
~/.config/polybar/config file, we see the defines for the modules -

width = 100%
height = 27
background = ${bar/top.background}
foreground = ${bar/top.foreground}
line-color = ${bar/top.background}
line-size = 2
spacing = 3
padding-right = 4
module-margin-left = 0
module-margin-right = 6
font-0 = NotoSans-Regular:size=8;0
font-1 = unifont:size=6;-3
font-2 = FontAwesome:size=8;-2
font-3 = NotoSans-Regular:size=8;-1
font-4 = MaterialIcons:size=10;-1
font-5 = Termsynu:size=8:antialias=false;0

[module/powermenu]
type = custom/menu
format-padding = 5
label-open = ䷡
label-close = X
menu-0-0 = Terminate WM
menu-0-0-foreground = #fba922
menu-0-0-exec = bspc quit -1
menu-0-1 = Reboot
menu-0-1-foreground = #fba922
menu-0-1-exec = menu_open-1
menu-0-2 = Power off
menu-0-2-foreground = #fba922
menu-0-2-exec = menu_open-2
menu-1-0 = Cancel
menu-1-0-foreground = #fba922
menu-1-0-exec = menu_open-0
menu-1-1 = Reboot
menu-1-1-foreground = #fba922
menu-1-1-exec = sudo reboot

menu-2-0 = Power off
menu-2-0-foreground = #fba922
menu-2-0-exec = sudo poweroff
menu-2-1 = Cancel
menu-2-1-foreground = #fba922
menu-2-1-exec = menu_open-0

[module/cpu]
type = internal/cpu
interval = 0.5
format = <label> <ramp-coreload>
label = CPU
ramp-coreload-0 = ▁
ramp-coreload-0-font = 2
ramp-coreload-0-foreground = #aaff77
ramp-coreload-1 = ▂
ramp-coreload-1-font = 2
ramp-coreload-1-foreground = #aaff77
ramp-coreload-2 = ▃
ramp-coreload-2-font = 2
ramp-coreload-2-foreground = #aaff77
ramp-coreload-3 = ▄
ramp-coreload-3-font = 2
ramp-coreload-3-foreground = #aaff77
ramp-coreload-4 = ▅
ramp-coreload-4-font = 2
ramp-coreload-4-foreground = #fba922
ramp-coreload-5 = ▆
ramp-coreload-5-font = 2
ramp-coreload-5-foreground = #fba922
ramp-coreload-6 = ▇
ramp-coreload-6-font = 2
ramp-coreload-6-foreground = #ff5555
ramp-coreload-7 = █
ramp-coreload-7-font = 2
ramp-coreload-7-foreground = #ff5555

[module/clock]
type = internal/date
interval = 2

date = %%{F#999}%Y-%m-%d%%{F-} %%{F#fff}%H:%M%%{F-}

[module/date]
type = internal/date
date =  %%{F#99}%Y-%m-%d%%{F-} %%{F#fff}%H:%M%%{F-}
date-alt = %%{F#fff}%A, %d %B %Y %%{F#fff}%H:%M%%{F#666}:%%{F#fba922}%S%%{F-}

[module/memory]
type = internal/memory
format = <label> <bar-used>
label = RAM
bar-used-width = 30
bar-used-foreground-0 = #aaff77
bar-used-foreground-1 = #aaff77
bar-used-foreground-2 = #fba922
bar-used-foreground-3 = #ff5555
bar-used-indicator = |
bar-used-indicator-font = 6
bar-used-indicator-foreground = #ff
bar-used-fill = ─
bar-used-fill-font = 6
bar-used-empty = -
bar-used-empty-font = 6
bar-used-empty-foreground = #444444

[module/ki3]
type = internal/i3
; Only show workspaces defined on the same output as the bar
;
; Useful if you want to show monitor specific workspaces
; on different bars
;
; Default: false
pin-workspaces = true
; This will split the workspace name on ':'
; Default: false
strip-wsnumbers = true
; Sort the workspaces by index instead of the default
; sorting that groups the workspaces by output
; Default: false

index-sort = true
; Create click handler used to focus workspace
; Default: true
enable-click = false
; Create scroll handlers used to cycle workspaces
; Default: true
enable-scroll = true
; Wrap around when reaching the first/last workspace
; Default: true
wrapping-scroll = true
; Set the scroll cycle direction
; Default: true
reverse-scroll = false
; Use fuzzy (partial) matching on labels when assigning
; icons to workspaces
; Example: code;♚ will apply the icon to all workspaces
; containing 'code' in the label
; Default: false
fuzzy-match = true

[module/volume]
type = internal/alsa
speaker-mixer = IEC958
headphone-mixer = Headphone
headphone-id = 9

format-volume = <ramp-volume> <label-volume>
label-muted =  muted
label-muted-foreground = #66
ramp-volume-0 = 
ramp-volume-1 = 
ramp-volume-2 = 
ramp-volume-3 = 

[module/wired-network]
type = internal/network
interface = net0
interval = 3.0
label-connected =  %{T3}%local_ip%%{T-}

Now that we have our status bars and Polybar Modules defined, we need to configure i3 to use
Polybar instead of the default i3status that comes configured within the bar { ... } block of the i3
config file. See the beginning of this Polybar section for details on adding polybar to i3 instead, if
you haven't already.

If you have one monitor, you can simply run polybar top to start the top status bar created above,
and creating a start script should be straight-forward. If you are using multiple monitors and want
to replicate the status bars across all displays, create the below script within ~/.config/polybar/ ,
name it what you wish, but be sure it corresponds with how you choose to exec_always in your i3
config later on.

label-disconnected-foreground = #66

[module/wireless-network]
type = internal/network
interface = net1
interval = 3.0
ping-interval = 10
format-connected = <ramp-signal> <label-connected>
label-connected = %essid%
label-disconnected =  not connected
label-disconnected-foreground = #66
ramp-signal-0 = 
ramp-signal-1 = 
ramp-signal-2 = 
ramp-signal-3 = 
ramp-signal-4 = 
animation-packetloss-0 = 
animation-packetloss-0-foreground = #ffa64c
animation-packetloss-1 = 
animation-packetloss-1-foreground = ${bar/top.foreground}
animation-packetloss-framerate = 500

Starting Polybar

#!/bin/bash
Author: Shaun Reed | Contact: shaunrd0@gmail.com | URL: www.shaunreed.com
A script placed in ~/.config/polybar/ - Uses ${env:MONITOR}
Starts polybars top and bottom on multiple displays
###
############

Polybar Startup Script Source

Now, in your ~/.config/polybar/config file, ensure the ${env:MONITOR} environment variable is used to
define the monitors -

Make the script executable and run it, polybar will start with your custom configs -

You may see errors for symbols used in fonts you do not have installed, see below for
troubleshooting information.

To kill all Polybars, run pkill -f polybar

You may run into issues with Unicode characters used in these configurations, see the links /
commands below for help troubleshooting. The goal is usually to track down the font you are

start-polybar.sh

Kill any previous polybars
pkill -f polybar

For each monitor in list up to ':'
for m in $(polybar --list-monitors | cut -d":" -f1); do
 # Reload polybars with monitor device name
 MONITOR=$m polybar --reload top &
 MONITOR=$m polybar --reload bottom &
done

[bar/top]
monitor = ${env:MONITOR}
width = 100%
height = 34
background = #00000000
foreground = #ccffffff
Reduced..

sudo chmod a+x start-polybar.sh
./start-polybar.sh

Verify / Install Fonts

https://github.com/polybar/polybar/issues/763

missing and install it, preferably via your system package manager. If you see an error like the
below when starting your Polybars, this is likely the issue

It is important to note that not defining the relevant font in the Polybar definition within
~/.config/polybar/config will result in the same error.

Cross-check that you have the supported fonts installed by searching up your character in a
Unicode Character Search and checking that a relevant font is installed with the below command

This matches the Great Power Hexagram, which I use for my system power options / context menu.

The fc-match command above will output all fonts compatible with that symbol, if there is no
output, see the Supporting Fonts link from the character's search result, and install it via your
package manager.

If it is not installed, search fonts available to install via pacman package manager

If it is installed an the error is still present, see that the corresponding font for the character is
included in the define for the status bar it is used in. For example, to use the Hexagram above, I
added the Unifont:size=8;0 line to my top Polybar definition in ~/.config/polybar/config -

If still having issues, check the following commands for more info / useful output

Arch Wiki - Fonts

warn: Dropping unmatched character ▁ (U+2581)

fc-match -s monospace:charset=04de1

sudo pacman -Ss ttf- |grep unicode
sudo pacman -Ss otf- |grep unicode

[bar/top]
monitor = ${env:MONITOR}
font-0 = NotoSans-Regular:size=8;-1
font-1 = MaterialIcons:size=10;0
font-2 = Termsynu:size=8:antialias=false;-2
font-3 = FontAwesome:size=10;0
font-4 = Unifont:size=8;0

Search for installed fonts
fc-list | grep fontname

http://www.fileformat.info/info/unicode/char/search.htm
http://www.fileformat.info/info/unicode/char/4de1/index.htm
http://www.fileformat.info/info/unicode/char/4de1/fontsupport.htm
https://wiki.archlinux.org/index.php/Fonts

See the Arch wiki on Fonts for much more information. Some of this information has been copied
from there for my own reference / notes.

These commands will list installed fonts, see the subcategories below for sorting through installed
fonts.

Font aliases such as serif , sans-serif , monospace , and others can be used to list fonts with the below
command -

This is useful when trying to verify that the proper font is installed for displaying a unicode
character.

For example, the below is matching a font for the character for a pile of poo, or U+1F4A9 -

Installing Fonts

List Installed Fonts

List all installed fonts
fc-list

List verbose information on a font
Shows us font family, full-name, and postscriptname
If this isn't grepped, we will list ALL fonts verbosely
fc-list -v | grep Weather

List fonts for specified lang
fc-list -f '%{file}\n' :lang=ar
#+ list all japanese font families
fc-list -f "%{family}\n" :lang=ja

Aliases

fc-match monospace

Unicode Character Support

https://wiki.archlinux.org/index.php/Fonts
https://www.fileformat.info/info/unicode/char/1f4a9/index.htm

Input this character into vim by running :UnicodeSearch! U+1F4A9 or enter <Ctrl><V>U1F4A9 while in
insert mode within vim.

To list fonts installed by Pacman -

To install fonts manually, see the ~/.local/share/fonts directory and copy the correct font file format
within. For example, to install Weather Icons simply clone the repository and copy the needed Font
File to the ~/.local/share/fonts directory.

For me, the file I needed was weathericons-regular-webfont.ttf , which installed the font with the full-
name Weather Icons , seen by the output below -

Sometimes it may be necessary to then run fc-cache to update the font configuration cache on our
system, but generally this will be handled automatically. Nevertheless, it is a simple step to
perform and ensures the font is fully recognized by our system.

If the font is not appearing in a terminal or application, ensure that the app or terminal is
configured to use the newly installed font.

The below, and some of the other commands here, from user thisoldman on Arch discussions -

Match unicode character with supported font
fc-match -s monospace:charset=1F4A9

Installed by Package Manager

list font packages installed by pacman
fc-list -f "%{file} " | xargs pacman -Qqo | sort -u

Manual Installation

fc-list -v | grep Weather
 family: "Weather Icons"(s)
 fullname: "Weather Icons Regular"(s)
 postscriptname: "WeatherIcons-Regular"(s)

Misc

list all fonts and styles known to fontconfig
fc-list : | sort

https://erikflowers.github.io/weather-icons/
https://github.com/erikflowers/weather-icons/tree/master/font
https://github.com/erikflowers/weather-icons/tree/master/font
https://bbs.archlinux.org/viewtopic.php?id=139831

list monospace fonts by family and file
fc-list -f "%{family} : %{file}\n" :spacing=100 | sort
all bold fonts
fc-list :style=Bold | sort

To mount your google drive as a network storage location on Linux, check out google-drive-
ocamlfuse. It's a very useful cli tool to quickly mount your google drive to a local directory.

I don't see why I should duplicate the official installation instructions, see there for instructions to
setup the utility on Ubuntu. Once that's done, you can mount your Google Drive with a simple
command

Usually, I do something like this

Once running this command, a browser will open and you can select the google account to
authenticate with. The Drive associated with this account is the one that will mount to the
directory.

User configurations are in ~/.gdfuse/default/ by default. Setting download_docs=false in
~/.gdfuse/default/config can sometimes help for mounting drives with a large number of Google Docs
files.

I have had the following issue randomly appear when hopping between i3 and plasma desktop
sessions. For now I'm just documenting it, I'll report findings on the GitHub soon.

Mount Google Drive

mkdir /path/to/mount/directory
google-drive-ocamlfuse /path/to/mount/directory

mkdir /path/to/mount/directory
google-drive-ocamlfuse ~/GDrive

kapper@xps:~$ ls GDrive
ls: cannot access 'GDrive': Transport endpoint is not connected
kapper@xps:~$ ls .config/autostart-scripts/
kapper@xps:~$ rm -r GDrive
rm: cannot remove 'GDrive': Transport endpoint is not connected
kapper@xps:~$ sudo rm -r GDrive
[sudo] password for kapper:
rm: cannot remove 'GDrive': Is a directory
kapper@xps:~$ ll
ls: cannot access 'GDrive': Input/output error
total 772

https://github.com/astrada/google-drive-ocamlfuse
https://github.com/astrada/google-drive-ocamlfuse
https://github.com/astrada/google-drive-ocamlfuse#installation

To fix this, we first need to get the ~/GDrive directory in a workable state again. The mountdrive.sh
script in the command below is a script I wrote to mount my drive automatically. This file will not
exist on your system, but for this first step you should make sure you have no script or
automation that mounts your Google Drive on reboot or login, then reboot the system.
Optionally, you can try to run sudo umount --force /path/to/mount/directory instead of rebooting.

When logging back in, we can see the directory is fine, so we made some progress

Next, we remove all configurations for google-drive-ocamlfuse that are stored in our home directory.
To do this, run the command below. Note that this will remove all authentication with your google
accounts.

drwxr-xr-x 39 kapper kapper 4096 Dec 20 12:33 ./
drwxr-xr-x 3 root root 4096 Dec 6 09:28 ../
lrwxrwxrwx 1 kapper kapper 17 Dec 6 17:44 .bash_aliases -> dot/.bash_aliases
-rw------- 1 kapper kapper 29382 Dec 20 12:29 .bash_history
-rw-r--r-- 1 kapper kapper 220 Dec 6 09:28 .bash_logout
lrwxrwxrwx 1 kapper kapper 11 Dec 6 17:44 .bashrc -> dot/.bashrc
-rw-rw-r-- 1 kapper kapper 172 Dec 18 14:39 .bash_secrets
drwx------ 3 kapper kapper 4096 Dec 20 01:00 .gdfuse/
d????????? ? ? ? ? ? GDrive/
-rw-rw-r-- 1 kapper kapper 54 Dec 13 15:15 .gitconfig

rm ~/.config/autostart-scripts/mountdrive.sh
sudo reboot now

kapper@xps:~$ ls GDrive/
kapper@xps:~$ ll
total 772
drwxr-xr-x 39 kapper kapper 4096 Dec 20 12:33 ./
drwxr-xr-x 3 root root 4096 Dec 6 09:28 ../
lrwxrwxrwx 1 kapper kapper 17 Dec 6 17:44 .bash_aliases -> dot/.bash_aliases
-rw------- 1 kapper kapper 29382 Dec 20 12:29 .bash_history
-rw-r--r-- 1 kapper kapper 220 Dec 6 09:28 .bash_logout
lrwxrwxrwx 1 kapper kapper 11 Dec 6 17:44 .bashrc -> dot/.bashrc
-rw-rw-r-- 1 kapper kapper 172 Dec 18 14:39 .bash_secrets
drwx------ 3 kapper kapper 4096 Dec 20 01:00 .gdfuse/
drwxrwxr-x 2 kapper kapper 4096 Dec 19 23:52 GDrive/
-rw-rw-r-- 1 kapper kapper 54 Dec 13 15:15 .gitconfig

sudo rm -r ~/.gdfuse/default/*

Now we can just reauthenticate and the drive will mount successfully. This is the only workaround I
have found so far, and I'm not sure how I can reproduce the bug. I tried clearing the cache with the
-cc flag, and that did not fix the problem.

google-drive-ocamlfuse ~/GDrive

Multiplexers can be used to reattach to previous sessions and manage clipboard content / session
history. This means that when you close a terminal, the session still exists in the background and
can be called to the foreground using your choice of tmux commands.

To reload you tmux config, press Ctrl+B and then : to bring up a command prompt, and type the
following command in the prompt -

This will reload the changes made in your configuration and apply them to all active tmux sessions

Start tmux with the -u flag to enable utf8 support -

tmux

:source-file ~/.tmux.conf

tmux -u
alias tmux='tmux -u'

Session / Server Management
Start the tmux server
If ran while a tmux server is active, Tmux will not allow you to nest servers within eachother
tmux
tmux list-commands
List active tty sessions tracked by the local tmux server
tmux list-sessions
Interactive terminal to choose from previous sessions. Shows a thumbnail of the session in its last known state
tmux choose-session

If you are running on a potato, you might need to use the following commands periodically to clean up your
server as it will consume significant RAM.

Kills all sessions, without killing the server.
This command can confuse the interface / tmux status if you utilize session ID within your tmux status bar.
ie.) If you run this on an active server within session ID 25, all sessions will be killed but your new session IDs
will not reset to 1..2.. etc

Tmux has a very nice interface which can be customized to suit your needs and display the
information relevant to your environment. This can be found in the ~/.tmux.conf file but is
recommended to be customized within the ~/.tmux.conf.local file.

Some useful settings can be found below, taken from my Dotfiles Repository

To fix this, restart your tmux server
tmux kill-session -a
Kill tmux server, this will close ALL terminals and any WIP will be lost if it has not been saved.
tmux kill-server

Configuration / Status

.tmux.conf
#
If symbols or powerline layout fail to appear...
#+ Check your terminal emulator font settings include these fonts
#+ Check that required fonts are installed
#
Note: The use of 256colours in this file allows for portable color definitions between platforms and applications
#+ Changing to a different color interpretation may result in some apps displaying colors differently than others
#+ Vim plugin 'Colorizer' does not reflect the actual 256colour values
#+ See https://jonasjacek.github.io/colors/ for a full list of 256colours

Mouse interaction
set -g mouse on

Status bar location
set-option -g status-position top

Status update interval
set -g status-interval 1

Basic status bar colors
set -g status-style fg=colour240,bg=colour233

Left side contents of status bar
set -g status-left-style bg=colour233,fg=colour243
set -g status-left-length 40
Note: No bold required, no BG reveal produced by symbol gaps on left side
#+ Font: Powerline Consolas

https://gitlab.com/shaunrd0/dot

#+ Some unicode characters may not appear when viewing this code via web browser
#+ Symbols below are 'left_hard_divider' and can be seen here (https://www.nerdfonts.com/cheat-sheet)
set -g status-left "#[fg=colour233,bg=colour100,bold] #S #[fg=colour100,bg=colour240,nobold]
#[fg=colour233,bg=colour240] #(uname -m)#F #[fg=colour240,bg=colour235]
#[fg=colour240,bg=colour235] #I:#P #[fg=colour235,bg=colour233] #[fg=colour240,bg=colour233]
#(uname -r)"
Above, we use the #(COMMAND) syntax to print the output of COMMAND to the tmux status bar.
#I, #P, #F above are all tmux custom variables which can be found in the tmux manpage.

Right side of status bar
set -g status-right-style bg=colour233,fg=colour243
set -g status-right-length 150
Hide right bar entirely
#set -g status-right ""

Note: Powerline font requires alternate of bold on right side
Corrects gap on right of character that reveals BG color
#+ Font: Powerline Consolas
#+ Some unicode characters may not appear when viewing this code via web browser
#+ Symbols below are 'right_hard_divider' and can be seen here (https://www.nerdfonts.com/cheat-sheet)
set -g status-right "#[fg=colour235,bg=colour233,bold] #[fg=colour240,bg=colour235,nobold] %H:%M:%S
#[fg=colour240,bg=colour235,bold] #[fg=colour233,bg=colour240,nobold] %d-%b-%y
#[fg=colour100,bg=colour240,bold] #[fg=colour233,bg=colour100,bold] #H "

Window status (Centered)
set -g window-status-current-format "#[fg=colour255,bg=colour233] #[fg=colour100,nobold] #(whoami)@#H
#[fg=colour255,bg=colour233,nobold] "
Current window status
set -g window-status-current-style bg=colour100,fg=colour235
Window with activity status
set -g window-status-activity-style bg=colour233,fg=colour245
Window separator
set -g window-status-separator ""
Window status alignment
set -g status-justify centre

NOTE
These are just SOME useful settings and not a complete configuration. See
https://gitlab.com/shaunrd0/dot/blob/master/.tmux.conf for a full configuration that I use / edit frequently. It may
look very different then the above, but uses the same ideas.

Want your current working directory to show some git repository information in your status bar?
Gitmux

tmux reference guide

#(date) # Run a shell command in status bar
#I 		# Window index
#S 		# Session name
#W 		# window name
#F 		# window flags
#H 		# Hostname
#h 		# Hostname, short
#D 		# pane id
#P 		# pane index
#T 		# pane title
C-b [# Enter scroll mode then press up and down
C-b ? 		# Show help

https://github.com/arl/gitmux
https://referenceguide.dev/cheatsheet/tmux

Yakuake is a drop-down terminal application that i've used for years and may one day consider
contributing to. This page is a collection of notes for the application.

I set yakuake as a startup application so it's always available when I reboot my computer. It's just
nice to have a terminal readily available.

User configuration is in ~/.config/yakuakerc , an example file is below. This file is all of the settings
outlined on the yakuake repository, with the default setting applied. It's just meant to put all the
available configurations in front of you so you can pick and choose which you want.

Yakuake

sudo apt install yakuake

yakuakerc

[Animation]
AutoOpen=false
Frames=17
PollInterval=500
UseVMAssist=true

[Appearance]
BackgroundColor=#000000
BackgroundColorOpacity=0.4
Blur=false
KeyboardInputBlockIndicatorColor=#FF0000
KeyboardInputBlockIndicatorDuration=250
Skin=default
SkinInstallWithKns=false
TerminalHighlightDuration=250
Translucency=false

[Behavior]
FocusFollowMouse=false
OpenAfterStart=false
RememberFullscreen=false

https://github.com/KDE/yakuake/blob/master/app/config/yakuake.kcfg

Note that yakuake will automatically alphabetize this file and all configurations within. I've only
noticed this happening when stopping yakuake completely with pkill yakuake and then starting the
application again. This is the same process required to reload a ~/.config/yakuakerc after making
some changes.

I think the yakuakerc file also supports shortcuts and keybinds, but I've not had much luck yet.
Using the keybind scheme exporter and importer is simple, it just would be nice to have my
keybinds automatically loaded and save the clicking around. But you really will only have to do this
when you're migrating user configurations to a new system, which isn't often.

Go to the configure keyboard shotcuts screen in yakuake settings, then click ManageSchemes-
>MoreActions->ExportScheme

[Dialogs]
ConfirmQuit=true
FirstRun=false

Shortcuts

https://knoats.com/uploads/images/gallery/2021-12/image-1639839278008.png

This will ask you where to place a yakuake.shortcuts file - you can put this file wherever you want,
because you will be manaually loading it using the Import option in the screenshot above. The
contents of this file is seen below. You can edit the file or use the GUI tool. toggle-window-state
global shortcut is the one used for open / retracting the terminal.

[Global Shortcuts]
toggle-window-state=Meta+`

[Shortcuts]
close-active-terminal=Ctrl+Shift+R
close-session=none
decrease-window-height=Alt+Shift+Up
decrease-window-width=Alt+Shift+Left
edit-profile=none
file_quit=Ctrl+Shift+Q
grow-terminal-bottom=Ctrl+Alt+Down
grow-terminal-left=Ctrl+Alt+Left
grow-terminal-right=Ctrl+Alt+Right
grow-terminal-top=Ctrl+Alt+Up
help_about_app=none
help_about_kde=none
help_report_bug=none
help_whats_this=Shift+F1
increase-window-height=Alt+Shift+Down
increase-window-width=Alt+Shift+Right
keep-open=none
manage-profiles=none
move-session-left=Ctrl+Shift+Left
move-session-right=Ctrl+Shift+Right
new-session=Ctrl+Shift+T
new-session-quad=none
new-session-two-horizontal=none
new-session-two-vertical=none
next-session=Shift+Right
next-terminal=Ctrl+Tab; Shift+Tab
options_configure=Ctrl+Shift+,
options_configure_keybinding=none
options_configure_notifications=none
previous-session=Shift+Left
previous-terminal=Ctrl+Shift+Tab
rename-session=none

split-left-right=Ctrl+(
split-top-bottom=Ctrl+)
switch-to-session-1=none
switch-to-session-12=none
switch-to-session-2=none
switch-to-session-3=none
switch-to-session-4=none
switch-to-session-5=none
switch-to-session-6=none
switch-to-session-7=none
switch-to-session-8=none
switch-to-session-9=none
toggle-session-keyboard-input=none
toggle-session-monitor-activity=Ctrl+Shift+A
toggle-session-monitor-silence=Ctrl+Shift+I
toggle-session-prevent-closing=none
toggle-window-state=none
view-full-screen=Ctrl+Shift+F11

