
Configure FTP
Configure Postfix
Configuring Multi-boot Filesystems
Crontab
Server Hostname
Swap Allocation
Synchronizing Time Using NTP
Systemd Services
Unattended Upgrades

System Admin

You can use scp instead, taking advantage of the added security and already-configured users on
your system. It works a lot like ssh

Copy a file from a remote host to your local host -

If you still need or want FTP, you can follow the steps below to configure the FTP server and then
connect with Filezilla.

I am using an Ubuntu 19.04 server in this guide, depending on your system your steps may vary
slightly.

Assuming you have nothing installed, run sudo apt-get update && sudo apt install vsftpd to install vsftpd
(Very Secure FTP Daemon). Navigate to the home directory of the user you wish to enable FTP
access, and run the following.

Create a directory where files can be uploaded, you can name this directory whatever you want.
Give this directory permissions so you can upload files to it via FTP clients like FileZilla.

Configure FTP

scp -i ~/.ssh/some_key -P 22 username@123.123.123.12:/home/username/test .

Installing Very Secure FTP Daemon

Login as your sudo user
sudo su USER

Create FTP Directory
mkdir /home/USER/ftp
sudo chown nobody:nogroup /home/USER/ftp
sudo chmod a-w /home/USER/ftp

Create User FTP Directories

mkdir /home/USER/ftp/files
sudo chown USER:USER /home/USER/ftp/files
sudo chmod 777 /home/USER/ftp/files

Configure vsftpd Settings

If you have a firewall enabled, be sure you open the TCP ports 20, 21, 990, and 40000-50000
before you continue.

Add the following to /etc/vsftpd.conf

Run echo "USER" | sudo tee -a /etc/vsftpd.userlist && sudo systemctl restart vsftpd to add your user to the
userlist file we configured above and restart the service

tail -f /var/log/syslog in another console to see a live feed of service logs when restarting instead of
checking the status with sudo systemctl status

Change or modify the following values, when editing these files I like to comment out the default
value, and create a separate value in an organized list with my custom settings. This is useful later
should I want to refer back to the default value I can just search it up in my file, and keeps things
organized so when I can pick things back up quickly. You can do this however you see fit. The
result of my modified values within vsftpd.conf is below.

FTP Initial Configuration Options
pasv_min_port=40000
pasv_max_port=50000
user_sub_token=$USER
local_root=/home/$USER/ftp
pasv_min_port=40000
pasv_max_port=40000
userlist_enable=YES
userlist_file=/etc/vsftpd.userlist
userlist_deny=NO
pasv_promiscuous=YES
allow_anon_ssl=NO
force_local_data_ssl=YES
force_local_logins_ssl=YES
ssl_tlsv1=YES
ssl_sslv2=NO
ssl_sslv3=NO
require_ssl_reuse=NO
ssl_ciphers=HIGH

Values Modified During FTP Setup
chroot_local_user=YES
write_enable=YES
ssl_enable=YES

Run sudo systemctl restart vsftpd to restart the service and test your connection using Filezilla.

If you're having issues with your FTP connection, check on the service with the following commands
sudo systemctl -l status vsftpd sudo tail -f /var/log/vsftpd.log

To test FTP connections via commandline, run the following
ftp -p IPADDRESS

You cannot connect to FTP via commandline using this method if you have enabled SSL/TLS
because your connection will not be encrypted under TLS. Use Filezilla or another encrypted
connection method instead.

Here's a working config file, with some comments on some extra settings I found on the manpages
for vsftpd.conf

Debugging FTP Connections

Notes

*Example config file /etc/vsftpd.conf.bak
*Don't forget to backup your default /etc/vsftpd.conf.bak
#
Custom FTP configuration for basic server configuration
#
These settings should be refined for security
Firewall should be used and reflect the settings in this file
For more security, use keys and disable password authentication
+Restrict FTP access to a list of approved IP's with distributed keys

FTP Custom Configuration Options

Set chroot user options
chroot_local_user=YES
user_sub_token=$USER

Set Directory FTP Will Default Into
local_root=/home/$USER/ftp
write_enable=YES
If you can't write with Write_enable=YES, check directory permissions
Create .../ftp/files and chmod 777 .../ftp/files

https://www.digitalocean.com/community/tutorials/how-to-set-up-vsftpd-for-a-user-s-directory-on-ubuntu-16-04#step-7-%E2%80%94-testing-tls-with-filezilla

Passive FTP Connection Settings
pasv_promiscuous=YES
pasv_min_port=40000
pasv_max_port=50000

userlist_enable=YES tells vsftpd to read /etc/vsftpd.userlist
/etc/vsftpd.userlist should contain one user per line
userlist_enable=YES
userlist_file=/etc/vsftpd.userlist
Sets the userlist to be a whitelist or a blacklist
userlist_deny=YES will deny FTP for any user on the list
userlist_deny=NO
Enable logs for failed FTP connections due to userlist errors
userlist_log=YES

Enable dual logs fot vsftpd in /var/log/
log/xferlog - stardard parsable log
log/vsftpd.log - vsftpd formatted logs
dual_log_enable=YES

This option specifies the location of the RSA certificate to use for SSL
encrypted connections.
rsa_cert_file=/etc/ssl/certs/ssl-cert-snakeoil.pem
rsa_private_key_file=/etc/ssl/private/ssl-cert-snakeoil.key
Other Settings For SSL
ssl_enable=YES
allow_anon_ssl=NO
force_local_data_ssl=YES
force_local_logins_ssl=YES
ssl_tlsv1=YES
ssl_sslv2=NO
ssl_sslv3=NO
require_ssl_reuse=NO
ssl_ciphers=HIGH

Default vsftpd.conf Values

Modifying the values below during setup of TLS encryption caused vsftpd to crash on startup..
These values were obtained following this tutorial. Just noting this in case I missed something here,
so I can revisit it later.

READ THIS: This example file is NOT an exhaustive list of vsftpd options.
Please read the vsftpd.conf.5 manual page to get a full idea of vsftpd's
capabilities.

The default compiled in settings are fairly paranoid. This sample file
loosens things up a bit, to make the ftp daemon more usable.
Please see vsftpd.conf.5 for all compiled in defaults.

secure_chroot_dir=/var/run/vsftpd/empty
pam_service_name=vsftpd
connect_from_port_20=YES
use_localtime=YES
dirmessage_enable=YES
local_enable=YES
anonymous_enable=NO
listen_ipv6=YES
listen=NO

Working values, establishes TLS connection via Filezilla FTP
rsa_private_key_file=/etc/ssl/private/ssl-cert-snakeoil.key
rsa_cert_file=/etc/ssl/certs/ssl-cert-snakeoil.pem

Modified values from generating ssl cert that are crashing vsftpd
rsa_cert_file=/etc/ssl/private/vsftpd.pem
rsa_private_key_file=/etc/ssl/private/vsftpd.pem

https://www.digitalocean.com/community/tutorials/how-to-set-up-vsftpd-for-a-user-s-directory-on-ubuntu-16-04#step-6-%E2%80%94-securing-transactions

Install postfix and mailutils -

When attempting to send mail from a new host, you may encounter errors with Google blocking or
filtering your mail as spam. To prevent this, simply create a GMail account you wish to send the
mail under, Activate 2FA on the new account, then Generate App Tokens to distribute to the hosts /
apps you wish to send mail on your behalf. See below for further instructions once you have a
GMail account created, and have generated an app password / token.

Once you have the app token, we'll need to add it to /etc/postfix/sasl/sasl_passwd - If this file doesn't
already exist, create it and include the following lines, modified with your information

Instead of using the password you usually input when logging into the GMail account, add the app
token generated after enabling 2FA following the links in the first step above. Below, we notify
postfix that we've made these changes by running sudo postmap /etc/postfix/sasl/sasl_passwd . This will
create a sasl_passwd.db file in the /etc/postfix/sasl directory.

Run postmap, and restrict access to our new file containing this password

Configure Postfix
Postfix is a Mail Transfer Agent (MTA) that can act as an SMTP server or client to
send or receive email. There are many reasons why you would want to configure
Postfix to send email using Google Apps and Gmail. One reason is to avoid
getting your mail flagged as spam if your current server’s IP has been added to
a blacklist.

Linode Postfix Tutorial

“

sudo apt install postfix mailutils

Create Google App Token

Postfix App Token Authentication

sudo echo "[smtp.gmail.com]:587 username@gmail.com:password" > /etc/postfix/sasl/sasl_passwd;

sudo postmap /etc/postfix/sasl/sasl_passwd;
sudo chown root:root /etc/postfix/sasl/sasl_passwd /etc/postfix/sasl/sasl_passwd.db;

https://myaccount.google.com/security
https://security.google.com/settings/security/apppasswords
https://www.linode.com/docs/email/postfix/configure-postfix-to-send-mail-using-gmail-and-google-apps-on-debian-or-ubuntu/

Configure postfix to relay mail through GMail's server by making the below changes to
/etc/postfix/main.cf -

That's it! Now restart postfix with sudo systemctl restart postfix and test sending mail using any of the
commands below -

or..

To change the email the system sends security alerts to, modify the /etc/aliases file to use your
email address for the root field below. If this isn't already in the file, add it, and run sudo newaliases
to update the system with the new information.

sudo chmod 600 /etc/postfix/sasl/sasl_passwd /etc/postfix/sasl/sasl_passwd.db;

Configure Relay Server

Change / modify this line..
relayhost = [smtp.gmail.com]:587

Add these lines...
Enable SASL authentication
smtp_sasl_auth_enable = yes
Disallow methods that allow anonymous authentication
smtp_sasl_security_options = noanonymous
Location of sasl_passwd
smtp_sasl_password_maps = hash:/etc/postfix/sasl/sasl_passwd
Enable STARTTLS encryption
smtp_tls_security_level = encrypt
Location of CA certificates
smtp_tls_CAfile = /etc/ssl/certs/ca-certificates.crt

Send Mail

echo "This email confirms that Postfix is working" | mail -s "Testing Posfix" emailuser@example.com

sendmail emailaddress@gmail.com
FROM: admin@sub.domain.com
SUBJECT: Hi
Body test text
.

Mailer Daemon

Now to test that his works correctly, attempt to sudo somewhere on the system where you'll be
required to enter a password, and botch it - all three times. You'll get an email from your server
warning you of the security event! Missing a password on an attempt to sudo is a security event

See man 5 aliases for format
postmaster: root
root: someone@somedomain.com

When installing a fresh Linux Distribution, you might want to dual-boot, or even multi-boot, into
different desktop environments. There are some pretty specific requirements we'll need to setup
manually for our new partitions though, see below for details on the different partitions needed to
setup an open ended multi-boot system alongside windows. This configuration will prompt for
selection of OS on boot, and will allow for nearly any number of distributions to be tested alongside
each other. These instructions vary slightly based on your specific scenario, so be sure to read and
understand the need for each setting below.

When installing any operating system, we first need to create our installation media. Sometimes
these are distributed as Installation CDs, but a simple USB can be turned into the same thing very
easily.

Depending on your system, see the sections below.

Not sure what distribution to use, or searching for a legit ISO?
Distrowatch is your friend. They provide rankings, comment boards, forums, and (usually) working
links to ISO downloads.

To burn an image using umount and dd on Linux, run the commands below.

Configuring Multi-boot
Filesystems

Installation Media

Choosing a Distribution

Linux ISO Tools

lsblk

https://distrowatch.com/

the command above will list all block storage devices connected to your system, find your device in
the list, and take note of the name assigned to it within the /dev/ directory. Usually, this name is
sd<?><?> or sd<?> for the primary partition. Usually, we would want to write to the primary on
the USB to ensure that we boot from our ISO.

Universal USB Installer handles almost every scenario for most if not all distros. Head over to UUI's
Download Page, grab the tool and see that your settings are adjusted for your needs.

Your Drive letters, distro release, and persistent file size may be different depending on
the requirements you have for your media. To format a drive and prepare for writing -

Formatting Media - UUI

To create USB installation media -

USB Installation Media - UUI

To create a persistant USB to boot wherever you like, adjust the slider on the bottom of the widows
labeled Step 4: to your desired size.

Alternatively, you can check out the tools below if you have issues using Universal USB Installer.

win32diskimager

If you've written to a USB and need to recreate the media for any reason, you'll need to clear the
contents on the USB before you can attempt to reformat and reimage the storage device. To do
this, ROSA can be used to clear the USB by selecting the device and clicking clear. After doing this

sudo dd if=/home/user/Downloads/inputfile.iso of=/dev/sd<?><?> && sync

Windows ISO Image Writer

When using this tool to create a persistent USB device, there is a temporary directory
created in your C:\Users\shaun\AppData\Local\Temp\ directory! If there is not enough space
on your drive, the process will not terminate itself, but it will not be able to complete. The
temporary files tend to be named nsf9D50.tmp or similar, and will take up equal or slightly
more space than is being written to your USB. So, if you create a persistent USB with 10GBs
of storage ontop of writing a 2GB .iso, you can expect to need ~12GB on your C:\ drive in
order for the process to complete successfully. Once completed, the temp files should be
automatically deleted. If the process gets hung due to insufficient space on your drive, this
may not happen and you may need to check your Temp directory to manually delete the
files yourself.

https://www.pendrivelinux.com/universal-usb-installer-easy-as-1-2-3/
https://www.pendrivelinux.com/universal-usb-installer-easy-as-1-2-3/
https://www.knoats.com/uploads/images/gallery/2020-01/image-1579358939788.png
https://www.knoats.com/uploads/images/gallery/2020-01/image-1579358880002.png
https://sourceforge.net/projects/win32diskimager/

you'll just need to format the drive using windows quick format tool via right click->format->FAT.
Then, use win332diskimager to copy the new image to your device.

When configuring a multi-boot system with specific partitions for different distributions, you'll need
to enable the following settings within your BIOS -

Disable Secure Boot
Disable fast boot
Set to UEFI mode only within boot options.

If you're unsure how to modify these settings, try running the setting in question through google
along with the model of your motherboard. This will hopefully provide some more specific
instructions on using the BIOS of your system.

Modifying these settings will allow us to create EFI files within a given EFI partition, created below,
where the system defines the boot sequence for multiple operating systems. This allows us to
leave our boot sequence open-ended, and easily append EFI system files to our partition / boot
options during the installation of a new system. There are, unfortunately, a few discrepancies to
how these steps will be performed - unless the system is to be configured exactly the same.

Insert your USB installer you created above using ROSA Image Writer or dd command above, and
reboot the system. Be sure to pay attention and press the required key to enter the BIOS during
boot. For me, the key was delete or F2. Once in the BIOS, navigate to your boot sequence / options
and there should be a list of connected storage devices, including all HDD, SSD, USBs, etc. Find
your USB installer in the list and select it, this will boot into the installer for your distribution. The
installer is usually found on the desktop as an executable application. These installers are usually
usable systems, but be aware that there will be no persistent data between reboots until the
installation is completed.

When selecting your installation media to boot from within BIOS, be sure to select the media that
corresponds with how your system is configured to boot. In this example, the media should start
similar to UEFI: USB If you were not using a UEFI configuration, simply select the same media
without the UEFI: prefix.

BIOS Configuration

USB Boot / Install

http://en.rosalinux.com/downloads/

Once booted into the USB created above, you will likely se an installation prompt. When given the
choice, select 'custom installation or 'custom partition configuration option, and continue with the
guide below.

If you are already using Grub on an existing EFI partition, you won't need to create a new one. Skip
this step, but make note of where this partition is, we will need it during installation.

This is the partition where we will create and store new bootloaders during installation of different
distributions. You will not directly edit or view this partitions contents, but it is the backbone of the
system-selection prompt (grub) that you will receive when booting after completing this
configuration. There may be a need to step into this partition if you decide to customize your grub
configuration, but we won't get into that here.

Size: 1GB (this is generous)
Type: FAT32 Location: Beginning of Space (Volume we are partitioning)
Mount: (Leave empty / blank) Flags: boot, efi (also called ESP or EFISYS)

You should always choose to install the bootloader on the same disk the EFI filesystem exists,
whether your case required the creation of a new EFI volume or if you are installing alongside a
previous one. Failing to do so can could cause issues during installation.

The only exception to this is when initially installing a Linux / Grub Bootloader - you will have to
create a new EFI partition for the Grub Bootloader. Grub will pick up the windows partition
automatically, but if it doesn't, you can always run sup grub-update to search for new EFI partitions
or configurations and update your Grub Bootloader appropriately.

This partition will store the Linux system files for your distribution, and unless otherwise partitioned
separately, your user's home directory and all of its content. This should be set according to both
your distributions total installation size, and if you are not partitioning dedicated space - you should
figure in any extra space your user(s) might require for new packages, updates, and applications.
Running out of space is a lot worse than having too much, so try to be a little generous here.

Size: Adjust according to installed size of distribution we are using.
Type: exf4 (Logical)
Location: Beginning of Space (Volume we are partitioning)
Mount: / Flags: root

Partitioning

Bootloader Partition

Root Partition

This is the space your system will use if you run out of memory. If you max out your RAM, this will
prevent your system from freezing up. Be cautious of low RAM systems with little or no swap, the
downfall to swap space is that once it is used it cannot be reallocated until the system reboots.

Size: 2GB-Preference (Ideally 50-100% of system RAM)
Type: linuxswap (Logical) Location: Beginning of Space (Volume we are partitioning)
Mount: (Leave empty / blank)

This is optional. I would recommend having a separate storage device (Massive HDDs are getting
cheaper..) to mount your home directories in, so if you ever need to reinstall the root directory of
your distributions you'll be able to do so without having to worry about backing up or losing data.

I would not advise taking the gamble, you will probably need to reinstall at some point - and it's
good insurance to have.

Size: Preference
Type: exf4 (Primary) Location: Beginning of Space (Volume we are partitioning)
Mount: /home

Now all we need to do is specify where to install the bootloader. This is easy since we just created
that partition above, the EFI Partition. Select the partition from the dropdown and click 'continue' or
'install' at the bottom corner. After this is complete, you'll just need to reboot and witness the grub!
From now on, you'll have an option of which system to boot into when starting your PC.

During installation of additional systems, we have two requirements, selecting a location for
booting the system, and selecting a location for configuring the root filesystem.

Create a new /root (and /home , if you choose) partition(s), then select the EFI partition we created
above for the bootloader install location (For me, this was sdb1 - the first partition of /dev/sdb) The
basic requirements of both can be seen below

Swap Partition (Optional)

Home Partition (Optional)

Installing

Adding New Systems

Size: 1GB (this is generous)
Type: FAT32 Location: Beginning of Space (Volume we are partitioning)
Mount: (Leave empty / blank) Flags: boot, efi

Size: Adjust according to installed size of distribution we are using.
Type: exf4 (Logical) Location: Beginning of Space (Volume we are partitioning)
Mount: / Flags: root

If you're having issues with system options not appearing in grub, be sure to load into a
previous system and run sudo update-grub - this command will search for new entries in the EFI
partition and automatically add them to your grub configuration / system prompt. You can
manually step through the EFI partition using the grub command-line to bail yourself out, but this
shouldn't be needed as returning to an already configured system and running this command will
pick up all new systems for next reboot.

Bootloader

Root

Grub Issues

grub rescue> set prefix=(hd0,1)/boot/grub
grub rescue> set root=(hd0,1)
grub rescue> insmod normal
grub rescue> normal
grub rescue> insmod linux
grub rescue> linux /boot/vmlinuz-3.13.0-29-generic root=/dev/sda1
grub rescue> initrd /boot/initrd.img-3.13.0-29-generic
grub rescue> boot

sudo apt install efibootmgr

sudo modprobe efivars

sudo efibootmgr

sudo efibootmgr -b 4 -B

Rescue Grub

Manjaro Install Forum Guide

test -d /sys/firmware/efi && echo UEFI || echo BIOS
sudo blkid
sudo parted -l
cat /proc/cmdline

https://www.linux.com/tutorials/how-rescue-non-booting-grub-2-linux/
https://forum.manjaro.org/t/wiki-windows-10-manjaro-dual-boot-step-by-step/52668

Using crontab to schedule tasks for the system to perform is fairly straight forward, once you get
familiar with the syntax used within the configuration. Run crontab -e to open the file for editing,
and modify to your needs using the examples below

Tell crontab where to send email alerts to by adding the following lines to any crontab

Alternatively, to silence all emails, just provide no email with MAILTO='' .

So, some example for various schedules -

Crontab

MAILTO=someuser@somedomain.com
MAILFROM=someuser@somedomain.com

Schedule our system to run the test.sh script once a day -
0 0 * * * /path/to/test.sh

Syntax used for time -
* * * * * command to be executed
- - - - -
| | | | |
| | | | ----- Day of week (0 - 7) (Sunday=0 or 7)
| | | ------- Month (1 - 12)
| | --------- Day of month (1 - 31)
| ----------- Hour (0 - 23)
------------- Minute (0 - 59)

Operators used in scheduling -
(*) : This operator specifies all possible values for a field. For example, an asterisk in the hour time field would be
equivalent to every hour or an asterisk in the month field would be equivalent to every month.
(,) : This operator specifies a list of values, for example: “1,5,10,15,20, 25”.
(-) : This operator specifies a range of values, for example: “5-15” days , which is equivalent to typing
“5,6,7,8,9,….,13,14,15” using the comma operator.
(/) : This operator specifies a step value, for example: “0-23/” can be used in the hours field to specify command
execution every other hour. Steps are also permitted after an asterisk, so if you want to say every two hours,
just use */2.

Alternative, more readable but less customizable syntax for scheduling common times -

Useful crontab commands

To run a command once a day at midnight
0 0 * * * /path/to/unixcommand

To run /path/to/command every five minutes, every day, enter:
5 0 * * * /path/to/command

To run /path/to/command five minutes after midnight, every day, enter:
5 0 * * * /path/to/command

Run /path/to/script.sh at 2:15pm on the first of every month, enter:
15 14 1 * * /path/to/script.sh

Run /scripts/phpscript.php at 10 pm on weekdays, enter:
0 22 * * 1-5 /scripts/phpscript.php

Run /root/scripts/perl/perlscript.pl at 23 minutes after midnight, 2am, 4am …, everyday, enter:
23 0-23/2 * * * /root/scripts/perl/perlscript.pl

Run /path/to/unixcommand at 5 after 4 every Sunday, enter:
5 4 * * sun /path/to/unixcommand

@reboot		Run once, at startup.
@yearly		Run once a year, “0 0 1 1 *”.
@annually	(same as @yearly)
@monthly	Run once a month, “0 0 1 * *”.
@weekly		Run once a week, “0 0 * * 0”.
@daily		Run once a day, “0 0 * * *”.
@midnight	(same as @daily)
@hourly		Run once an hour, “0 * * * *”.

Edit crontab configuration
crontab -e

List crontab jobs
crontab -l

Much of this and more information was found at CyberCiti

Check status of cron
sudo systemctl status cron
sudo journalctl -u cron
sudo journalctl -u cron | grep backup-script.sh

Cron logs
cat /var/log/cron
tail -f /var/log/cron
grep "my-script.sh"
tail -f /var/log/cron

Backup cron
crontab -l > /nas01/backup/cron/users.root.bakup
crontab -u userName -l > /nas01/backup/cron/users.userName.bakup

https://www.cyberciti.biz/faq/how-do-i-add-jobs-to-cron-under-linux-or-unix-oses/

Renaming a host on Ubuntu is simple, just need to make some very small changes to both
/etc/hosts and /etc/hostname . See the comments within the files below for more information. Once
these changes are made, simply reboot the host and the changes will be applied.

Similarly, the /etc/hostname file will contain just the name of the host. So, if we actually wanted to
name our host 'alvin', we would change its content to reflect that.

Server Hostname
Renaming An Ubuntu Linux Host

'/etc/hosts' should contain a line similar to the below
127.0.0.1 localhost
Change it to the following to name the host 'alvin'
127.0.0.1 alvin

alvin

Don't forget to reboot the host to apply the changes. Also, if you are hosting any content or
running applications, be sure to save your data and stop the processes if necessary in order
to avoid creating issues.

Creating swap memory for your host could prevent system or services from crashing when under
heavy loads. To do this, run the following commands.

After creating the swap file of the desired size, in the desired directory, we'll need to set some
permissions and prepare our file to be used for swap space -

In short, an fstab entry for mounting the swap partition we created above -

Swap Allocation

Creating Swap Files
To createa 512MiB swap file -
sudo dd if=/dev/zero of=/swapfile bs=1M count=512 status=progress

To create a 1GiB swap file -
sudo dd if=/dev/zero of=/swapfile bs=1GB count=1

To create a 10GiB swap file -
sudo dd if=/dev/zero of=/swapfile bs=1GB count=10

Enabling Swap

Set permissions
sudo chmod 600 /swapfile

Format file to be used for swap allocation
sudo mkswap /swapfile

Tell our system to mount this file for swap usage
sudo swapon /swapfile

Adding Default Swap Entry - fstab

<device> <dir> <type> <options> <dump> <fsck>
/swapfile none swap defaults 0 0

https://linux.die.net/man/5/fstab

Add this line to your /etc/fstab to mount and use this partition for swap automatically on system
reboots.

For more information, see Mounting Default Filesystems or ArchWiki - Fstab

To check available system swap space, run free -h to see output similar to the below -

Alternatively, we could run 'sudo swapon --show' to see the below output

The default swappiness value is set to 60, but to check, change, or verify your system swappiness,
see the commands below

Upon setting a custom swappiness value and rebooting, your custom configuration will be lost. Edit
/etc/sysctl.conf to contain the line below to ensure this value is kept between system reboots

Verifying Swap Configuration

root@host:~# free -h
 total used free shared buff/cache available
Mem: 983Mi 260Mi 62Mi 0.0Ki 660Mi 560Mi
Swap: 1.0Gi 15Mi 1.0Gi

sudo swapon --show
NAME TYPE SIZE USED PRIO
/swapfile file 1024M 15.8M -2

Swappiness Values

Check system swappiness setting
cat /proc/sys/vm/swappiness
60

Set a new swappiness value
sudo sysctl vm.swappiness=10
Check the setting was applied
cat /proc/sys/vm/swappiness
10

Swappiness Persistance

https://www.knoats.com/books/linux-admin/page/mounting-default-filesystems
https://wiki.archlinux.org/index.php/Fstab

First, turn off the swap file -

Remove the swap file entry from your /etc/fstab if you previously created one. If present, remove
the line similar to the below

Last, delete the swap file using rm -

vm.swappiness=10

Removing Swap Files

sudo swapoff -v /swapfile

/swapfile swap swap defaults 0 0

sudo rm /swapfile

Network Time Protocol (NTP) allows us to easily synchronize our servers with the indicated NTP
host. The settings stored in /etc/systemd/timesyncd.conf allow us to specify which NTP server we
would prefer to sync with, as well as which server(s) to use should our preferred option fail for
whatever reason.

The configuration above is an example of the default settings, which are commented out since
these same default settings are assumed by the Ubuntu system. If you want to change them, just
remove the comment and modify their values. Below, we have modified the settings to use various
servers based on our preferences.

Synchronizing Time Using
NTP

Check out NTP-Pool for a list of pools available to different regions.

Configuration

This file is part of systemd.
#
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
#
Entries in this file show the compile time defaults.
You can change settings by editing this file.
Defaults can be restored by simply deleting this file.
#
See timesyncd.conf(5) for details.

[Time]
#NTP=
#FallbackNTP=ntp.ubuntu.com
#RootDistanceMaxSec=5
#PollIntervalMinSec=32
#PollIntervalMaxSec=2048

https://www.ntppool.org/en/

Above, we tell systemd that we would prefer to connect to NTP servers in the following order

1. 0.north-america.pool.ntp.org
2. 1.north-america.pool.ntp.org
3. ntp.ubuntu.com
4. 0.arch.pool.ntp.org

If your server is for any reason out of sync, this could cause various issues down the line with
services or applications. To correct this, simply synchronize with your configured NTP servers by
running sudo timedatectl set-ntp true && timedatectl status - These commands will synchronize and then
print the status of your NTP connection. Be sure to verify the information is correct, and double-
check by running date within your bash terminal.

This file is part of systemd.
#
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
#
Entries in this file show the compile time defaults.
You can change settings by editing this file.
Defaults can be restored by simply deleting this file.
#
See timesyncd.conf(5) for details.

[Time]
NTP=0.north-america.pool.ntp.org 1.north-america.pool.ntp.org
FallbackNTP=ntp.ubuntu.com 0.arch.pool.ntp.org

#RootDistanceMaxSec=5
#PollIntervalMinSec=32
#PollIntervalMaxSec=2048

Synchronization

To define our own service with systemd , we need to create a daemon.service file. This is easily done
within a few quick lines using vim, and should only take a few minutes.

First, we need to locate the binary for the command we want to be executed as a service. This is
just good to have on-hand when defining a new service. Check where exactly your binary is using
which <command> , seen below

Now we know exactly where the binary that we execute is when we run the hexo command, and
we will use it within the hexo.service file we create below, so be sure to have it handy.

Create a service file like the one below for hexo by running sudo vim /etc/systemd/system/hexo.service .
If you are defining a service for something else, just rename this file accordingly.

Systemd Services

which hexo
/home/hexouser/.nvm/versions/node/v20.9.9/bin/hexo

To create a user service, place the hexo.service file within the $HOME/.config/systemd/hexouser/
directory. This will allow the user to manage the service without sudo by running systemd --
user start name.service

[Unit]
Description=Personal hexo blog service
After=network.target

[Service]
Type=simple
Another Type: forking
User=hexouser
WorkingDirectory=/home/hexouser/hexosite
ExecStart=/home/hexouser/.nvm/versions/node/v29.9.9/bin/hexo server --cwd /home/hexoroot/hexosite
ExecStop=/bin/kill -TERM $MAINPID
ExecReload=/bin/kill -HUP $MAINPID
Restart=on-failure
Other restart options: always, on-abort, etc

The install section is needed to use

When making changes to a service, you need to run sudo systemctl daemon-reload between edits to
apply your changes before restarting your service. Once the above file is created within
/etc/systemd/system/hexo.service we can start our hexo blog using systemd by running the usual
commands

We can even check on our logs using journalctl

`systemctl enable` to start on boot
For a user service that you want to enable
and start automatically, use `default.target`
For system level services, use `multi-user.target`
[Install]
WantedBy=multi-user.target
WantedBy=graphical.target

Start your new service
sudo systemctl start hexo.service
Enable your service to start automatically on reboot or crashing
sudo systemctl enable hexo.service
Check on your service
sudo systemctl status hexo.service

sudo journalctl -u hexo
journalctl --user-unit hexo

To configure linux hosts to automatically install updates and upgrades, add or edit the following
lines in /etc/apt/apt.conf.d/50unattended-upgrades . Feel free to change the settings as you see fit.

At the top of /etc/apt/apt.conf.d/50unattended-upgrades , you'll notice the block below, be sure to follow
my comments and make the changes needed

Add the following lines to sudo vim /etc/apt/apt.conf.d/20auto-upgrades .

Test that you can run a dy-run update using unattended-upgrades -

Unattended Upgrades

Unattended-Upgrade::Mail "user@example.com";
Unattended-Upgrade::MailOnlyOnError "true";
Unattended-Upgrade::Remove-Unused-Kernel-Packages "true";
Unattended-Upgrade::Remove-Unused-Dependencies "true";
Unattended-Upgrade::Automatic-Reboot "true";
Unattended-Upgrade::Automatic-Reboot-Time "02:38";

Unattended-Upgrade::Allowed-Origins {
 "${distro_id}:${distro_codename}";
	"${distro_id}:${distro_codename}-security";
	// Extended Security Maintenance; doesn't necessarily exist for
	// every release and this system may not have it installed, but if
	// available, the policy for updates is such that unattended-upgrades
	// should also install from here by default.
	"${distro_id}ESM:${distro_codename}";
	"${distro_id}:${distro_codename}-updates"; // <-- Uncomment this line.
//	"${distro_id}:${distro_codename}-proposed";
//	"${distro_id}:${distro_codename}-backports";
};

APT::Periodic::Update-Package-Lists "1";
APT::Periodic::Unattended-Upgrade "1";
Add these two lines...
APT::Periodic::Download-Upgradeable-Packages "1";
APT::Periodic::AutocleanInterval "7";

Also, check the logs for unattended-upgrades below

sudo unattended-upgrades --dry-run --debug

less /var/log/unattended-upgrades/unattended-upgrades.log

