
When you boot a Linux system, the following steps will be completed before you're greeted with
your usual OS

1. BIOS

Basic Input Output System (BIOS) performs a Power On Self Test (POST) to ensure all required
hardware is available and functional. If a problem is detected you will see an error message and
you will need to attempt to fix the issue and reboot before the system can proceed to the next step
in the boot process.

Once the BIOS POST check passes, the BIOS searches for the boolloader program using the MBR.
There is a short delay before executing the bootloader where you have a chance to press a key
(usually F12) to select the location for the BIOS to search for the MBR.

2. MBR

The Master Boot Record is located on the first sector of the bootable disk. On Linux you can see
this sector by running lsblk , and for me this partition is labeled nvme0n1p1 because I'm using an
M.2 NVME SSD. This SSD is encrypted so the structure might slightly differ from a non-encrypted
system. For a normal SSD, the sector would probably appear as sda , and for a HDD it would
appear as hda .

Note that regardless of which type of storage device you're bootloader is on, you will be able to
find the device under the /dev/ directory. That means my bootloader is at /dev/nvme0n1p1

Boot Process

lsblk

nvme0n1 259:0 0 931.5G 0 disk
├─nvme0n1p1 259:1 0 c512M 0 part /boot/efi
├─nvme0n1p2 259:2 0 732M 0 part /boot
└─nvme0n1p3 259:3 0 930.3G 0 part
 └─nvme0n1p3_crypt 253:0 0 930.3G 0 crypt
 ├─vgkubuntu-root 253:1 0 929.3G 0 lvm /
 └─vgkubuntu-swap_1 253:2 0 976M 0 lvm [SWAP]

ls /dev/nvme0*

/dev/nvme0 /dev/nvme0n1 /dev/nvme0n1p1 /dev/nvme0n1p2 /dev/nvme0n1p3

The MBR will launch the bootloader which in my case is GRUB2. Your system might use GRUB, or
possibly even LILO.

3. GRUB

GRand Unified Bootloader is responsible for loading the kernel for your system. If you want to try
out different Linux kernels, see my notes on Linux kernel management On some systems GRUB will
not appear by default, so you may need to modify the contents of /etc/default/grub to ensure your
system will show the GRUB splash screen. To do this, you can run the sudoedit /etc/default/grub
command and read the header comment, then proceed to make your changes in the
configuration file. The link to my notes on kernel management will cover this process in more detail
since it is required to switch Linux kernels, check it out for more detailed information.

After you make changes to GRUB or install new kernels, you will always need to run sudo update-
grub in order to apply the changes to your system.

Each valid entry for a kernel in grub will contain full system paths to two files - vmlinuz and initrd .
The z in vminuz stands for zip , since this is the compressed version of your kernel. The system
will decompress the kernel and boot into it, and then used initrd to initialize required software.

For more information on GRUB, check out the official GRUB Manual - Simple Configuration
documentation. This should provide you with all or most of the information you need, but you can
feel free to check out the more advanced sections of the guide if needed.

4. Kernel

Once the kernel is decompressed and the file system is mounted, the kernel will execute the
/sbin/init program, which performs software initialization up to the runlevel specified for your
system within your local configurations. This can be modified but each distribution may handle this
differently, so you should check the relevant documentation on how to do this if you are interested.

5. Init

This section has changed a good bit over the years and I noticed some differences in guides I found
online, so this information is just what I collected after a few minutes of checking manpages and
searching around my system.

Some useful manpages to checkout -

man inittab
man init
man runlevel
man utmp

https://knoats.com/books/linux-admin/page/kernel-management
https://www.gnu.org/software/grub/manual/grub/grub.html#Simple-configuration

The process is still the same for booting. This part of the boot process will initialize the software
required to run the environment specified up to the current runlevel setting. Each runlevel will start
different groups of software to support different environment features.

6. Runlevel

If you aren't sure what your runlevel setting is, just run the command to find out -

Our current runlevel is set to 5. When we run man runlevel , we can see a table describing what the
different runlevels mean.

But what software is initialized during boot? Check your /etc/ directory for subdirectories named
/etc/rc0.d , /etc/rc1.d , etc. There is one directory named /etc/rcS.d which is always initialized during

runlevel

N 5

OVERVIEW

 "Runlevels" are an obsolete way to start and stop groups of services used in SysV
 init. systemd provides a compatibility layer that maps runlevels to targets, and
 associated binaries like runlevel. Nevertheless, only one runlevel can be "active"
 at a given time, while systemd can activate multiple targets concurrently, so the
 mapping to runlevels is confusing and only approximate. Runlevels should not be used
 in new code, and are mostly useful as a shorthand way to refer the matching systemd
 targets in kernel boot parameters.

 Table 1. Mapping between runlevels and systemd targets
 ┌─────────┬───────────────────┐
 │Runlevel │ Target │
 ├─────────┼───────────────────┤
 │0 │ poweroff.target │
 ├─────────┼───────────────────┤
 │1 │ rescue.target │
 ├─────────┼───────────────────┤
 │2, 3, 4 │ multi-user.target │
 ├─────────┼───────────────────┤
 │5 │ graphical.target │
 ├─────────┼───────────────────┤
 │6 │ reboot.target │
 └─────────┴───────────────────┘

Startup.

Some binaries in these subdirectories start with K and others start with S . This just means that
the K binaries are ran when the system is shutdown, and the S binaries are ran when the system
is started.

You might noticed that all of these binaries are just named symlinks that point to binaries in
different directories. This is just one example of how symlinks can be used to organize processes
and files on your system.

tecmint - Linux Boot Process

thegeekstuff - Linux Boot Process

ls /etc/rc*

rc0.d/ rc1.d/ rc2.d/ rc3.d/ rc4.d/ rc5.d/ rc6.d/ rcS.d/

ls /etc/rc5.d/

K01gdomap S01cups S01lvm2-lvmpolld S01sddm
S01acpid S01cups-browsed S01nginx S01spice-vdagent
S01anacron S01dbus S01osspd S01sysstat
S01apport S01gdm3 S01plymouth S01tlp
S01avahi-daemon S01grub-common S01postfix S01trousers
S01binfmt-support S01haveged S01pulseaudio-enable-autospawn S01ubuntu-fan
S01bluetooth S01hddtemp S01rsync S01unattended-upgrades
S01console-setup.sh S01irqbalance S01rsyslog S01uuidd
S01cron S01kerneloops S01saned S01whoopsie

ls /etc/rc5.d/ -l

total 0
lrwxrwxrwx 1 root root 16 Dec 6 09:27 K01gdomap -> ../init.d/gdomap
lrwxrwxrwx 1 root root 15 Dec 6 09:27 S01acpid -> ../init.d/acpid
lrwxrwxrwx 1 root root 17 Dec 6 09:27 S01anacron -> ../init.d/anacron
lrwxrwxrwx 1 root root 16 Dec 6 09:27 S01apport -> ../init.d/apport
lrwxrwxrwx 1 root root 22 Dec 6 09:27 S01avahi-daemon -> ../init.d/avah
...

Resources and links

https://www.tecmint.com/linux-boot-process/
https://www.thegeekstuff.com/2011/02/linux-boot-process/

freecodecamp - Linux Boot Process

Revision #1
Created 25 March 2022 13:26:27 by Shaun Reed
Updated 25 March 2022 22:10:11 by Shaun Reed

https://www.freecodecamp.org/news/the-linux-booting-process-6-steps-described-in-detail/

