
To generate a key with no password using the ed25519 algorithm, we can run the following
command. This will output the generated private_key and private_key.pub withtin the directory
specified after -f

Now you can cat out your public key with cat /home/username/.ssh/username_ed25519.pub and copy the
output to the /home/remoteuser/.ssh/authorized_keys file on the remote host you want to access with
this private key. Take note of which remoteuser you use on the host, as logging in with any other
username will fail.

SSH will look for configurations passed to the commandline above all other configurations. Using a
command like ssh user@host.com -p 1234 -i /path/to/private_key will override the Port and IdentityFile
settings in all SSH configurations by using the commandline options -p and -i respectively.

If there are no relevant commandline options, SSH will then check for user configurations. Each
user may define their own configuration within ~/.ssh/config . You could construct the entire ssh
user@host.com -p 1234 -i /path/to/private_key command automatically by running ssh hostname if you add
the following configurations to ~/.ssh/config

Configuring SSHD
Authentication

Generating Private Keys

If you intend to use a password for your private key, do not pass it as an option through the
commandline! Your bash history should not contain passwords or other sensitive
information. Use ssh-keygen -t ed25519 -f /home/username/.ssh/username_ed25519 and follow the
secure prompts instead.

 ssh-keygen -t ed25519 -p "" -f /home/username/.ssh/username_ed25519

SSH Authentication Configuration

User Configurations

If you created your ~/.ssh/config file manually, you may see the following error when attempting to
SSH

SSH requires that this file is readable and writable only by the user it is relevant to. So to fix this,
we run the following command

Finally, if no other configurations are provided either within the ssh command's arguments or
within the relevant ~/.ssh/config file, SSH searches for any server configurations at /etc/ssh/ssh_config
.

The PAM configuration files are handled sequentially at the time of authentication. This means that
the order in which these settings are place is crucial to how they are interpreted by PAM. Be careful
to understand what each line does and where is should be placed, or you could end up being
locked out from your server due to a configuration error.

Upon starting an Ubuntu 19.04 server, PAM comes configured for basic password authentication for
SSH by using /etc/pam.d/common-auth within the /etc/pam.d/sshd configuration. Notice below on line 4
of the default /etc/pam.d/sshd configuration file packed with Ubuntu 19.04. PAM includes the
/etc/pam.d/common-auth file and sequentially runs through the steps it requires.

Host hostname
 HostName host.com
 User username
 Port 1234
 IdentityFile /path/to/private_key

Host ip-host
 HostName 127.0.0.1 # Can also use IPs for HostName
 User username
 Port 1234
 IdentityFile ~/.ssh/private_key # Can reference ~/ for user's home directory

Bad owner or permissions on /home/username/.ssh/config

sudo chmod 600 ~/.ssh/config

Server Configurations

Pluggable Authentication Modules

Default SSHD PAM

This page will only cover to and including line 14 of /etc/pam.d/sshd - the rest of these files were
provided for completeness.

PAM configuration for the Secure Shell service
Standard Un*x authentication.

@include common-auth

Disallow non-root logins when /etc/nologin exists.
account required pam_nologin.so

Uncomment and edit /etc/security/access.conf if you need to set complex
access limits that are hard to express in sshd_config.
account required pam_access.so

Standard Un*x authorization.
@include common-account

SELinux needs to be the first session rule. This ensures that any
lingering context has been cleared. Without this it is possible that a
module could execute code in the wrong domain.
session [success=ok ignore=ignore module_unknown=ignore default=bad] pam_selinux.so close

Set the loginuid process attribute.
session required pam_loginuid.so

Create a new session keyring.
session optional pam_keyinit.so force revoke

Standard Un*x session setup and teardown.
@include common-session

Print the message of the day upon successful login.
This includes a dynamically generated part from /run/motd.dynamic
and a static (admin-editable) part from /etc/motd.
session optional pam_motd.so motd=/run/motd.dynamic
session optional pam_motd.so noupdate

Print the status of the user's mailbox upon successful login.
session optional pam_mail.so standard noenv # [1]

Now, lets take a look at /etc/pam.d/common-auth -

Set up user limits from /etc/security/limits.conf.
session required pam_limits.so

Read environment variables from /etc/environment and
/etc/security/pam_env.conf.
session required pam_env.so # [1]
In Debian 4.0 (etch), locale-related environment variables were moved to
/etc/default/locale, so read that as well.
session required pam_env.so user_readenv=1 envfile=/etc/default/locale

SELinux needs to intervene at login time to ensure that the process starts
in the proper default security context. Only sessions which are intended
to run in the user's context should be run after this.
session [success=ok ignore=ignore module_unknown=ignore default=bad] pam_selinux.so open

Standard Un*x password updating.

#
/etc/pam.d/common-auth - authentication settings common to all services
#
This file is included from other service-specific PAM config files,
and should contain a list of the authentication modules that define
the central authentication scheme for use on the system
(e.g., /etc/shadow, LDAP, Kerberos, etc.). The default is to use the
traditional Unix authentication mechanisms.
#
As of pam 1.0.1-6, this file is managed by pam-auth-update by default.
To take advantage of this, it is recommended that you configure any
local modules either before or after the default block, and use
pam-auth-update to manage selection of other modules. See
pam-auth-update(8) for details.

here are the per-package modules (the "Primary" block)
auth [success=1 default=ignore] pam_unix.so nullok_secure
here's the fallback if no module succeeds
auth requisite pam_deny.so
prime the stack with a positive return value if there isn't one already;

See on line 17 above, where we define an authentication method, what should be done on success,
and what should be done otherwise (The default is a failed attempt, since we assume the user is
not who they say they are.) Upon successful authentication, we set the step=1, which simply tells
PAM to skip one step in our authentication process. So, instead of the default path sending the user
to line 19 where they are denied authentication, we move to the next valid line (23) and permit the
attempt.

The example above is the basics of how configuring PAM will be handled. It can be tricky at first,
but just mess with things a bit and you will have the hang of it in no time.

Surely, if we mean to secure our server we will need to define a more specific way to authenticate.
Below is an example configuration of a custom /etc/pam.d/sshd that allows us to do a few things
when a user attempts to login -

1. Prompt for a YubiKey
2. Prompt for Local Password
3. Check for /etc/nologin file

this avoids us returning an error just because nothing sets a success code
since the modules above will each just jump around
auth required pam_permit.so
and here are more per-package modules (the "Additional" block)
auth optional pam_cap.so
end of pam-auth-update config

Custom SSHD Authentication

PAM configuration for the Secure Shell service

Prompt for YubiKey first, to gate off all other auth methods
auth required pam_yubico.so id=<IDVALUE> id key=<KEYVALUE> key authfile=/etc/ssh/authorized_yubikeys

Prompt for the local password associated with user attempting login
nullok allows for empty passwords, though it is not recommended.
auth required pam_unix.so nullok

If /etc/nologin exists, do not allow users to login
Outputs content of /etc/nologin and denies auth attempt
auth required pam_nologin.so

We comment this out, because we already handled pam_unix.so authentication above

This gives us a little more security, and a lot more control over who can access our server when we
are doing impacting things that require data to remain untouched. This is a very touch
configuration file so there are a few things to note, I'll go over how I implemented each step of
authentication and then how to modify the default PAM SSHD settings to handle these changes
appropriately.

By prompting for a key first, we gate all other methods behind a hard to fake form of
authentication utilizing Yubico's OTP API within their Yubicloud service. It is possible to host your
own validation services, but for me I would rather leave that kind of security responsibility in the
hands of the much more capable and prepared hands of Yubico. See the Page on Configuring
YubiKey SSH Authentication for a complete guide on how to setup your key and a more in-depth
explanation of the required Yubico PAM and SSHD configuration steps. Upon purchase of a key, we
will need to register it with the Yubicloud and gather an ID and KEY. We pass this into a custom
PAM within our /etc/pam.d/sshd configuration file, and this enables Yubico to generate OTPs for
secure authentication.

On line 5 above, we create an API request upon authentication using our information from Yubico,
and check that the user attempting to login exists within the Authorized Yubikeys File, and that the
correct 12-character public key is associated with their account.

If you do not create an Authorized Yubikey file, you will not be able to authenticate. SSH login will
fail with errors that don't correspond with the issue - (ex.. Failue - Keyboard-interactive) If you are
having issues, be sure that the file exists in the correct place as indicated within /etc/pam.d/sshd ,
and ensure the keys / users are correct as well.

Standard Un*x authentication.
#@include common-auth

...
Excess config clipped off
All below lines remain the same as their corresponding in the default /etc/pam.d/sshd
...

Prompting For YubiKey

PAM configuration for the Secure Shell service

Prompt for YubiKey first, to gate off all other auth methods
auth required pam_yubico.so id=<IDVALUE> id key=<KEYVALUE> key authfile=/etc/ssh/authorized_yubikeys

...

https://www.knoats.com/books/ssh/page/yubikey-ssh-authentication
https://www.knoats.com/books/ssh/page/yubikey-ssh-authentication
https://www.knoats.com/link/55#bkmrk-now%2C-we%27ll-need-to-v

We then prompt for a password, which provides protection in the event the key falls into the wrong
hands. This way, we won't need to be scrambling our passwords every other week since they are
gated behind another form of secure authentication.

It would be possible to setup a configuration capable of removing a compromised public key from
all associated user accounts.

For example, should a public key be seen providing the incorrect password post-Yubikey
authentication, we can assume either the key has been stolen, or the user has forgotten their
password and will need to reset it. Send an email to the user notifying them of this activity, give
them a chance to reset their password, and upon no response or verification of a stolen key kick off
a script to remove the key from all accounts.

Above, we simply request basic pam_unix.so (PAM Unix Sign On module Authentication) with the
argument nullok , which enables empty passwords. This is handled as expected, and just asks us for
a password upon authentication, the password being set within the host - see Changing a User's
Password for more information.

The nologin check allows us to have full control over a system should we want to seal it off from
any logins, even if they are permitted to be on the host normally. The /etc/nologin file simply needs
to exist, and PAM will fail any authentication attempt and output the contents of the nologin file.
This allows us to create a message indicating why there is no logins permitted and who to contact
should there be an issue. This is a useful feature when attempting to protect data consistency in
environments where many people are accessing the same servers. Below, we configure the
pam_nologin.so module to handle this step in authenticating

Prompting For Local Password

...

Prompt for the local password associated with user attempting login
nullok allows for empty passwords, though it is not recommended.
auth required pam_unix.so nullok

...

Nologin Check

...

If /etc/nologin exists, do not allow any user to login
Outputs content of /etc/nologin and denies auth attempt

https://www.knoats.com/link/57#bkmrk-first-login
https://www.knoats.com/link/57#bkmrk-first-login

auth required pam_nologin.so

...

Revision #2
Created 6 July 2019 11:15:17 by Shaun Reed
Updated 4 June 2020 15:57:07 by Shaun Reed

