
i3 is a tiling window manager. See i3 User Guide for official documentation.

Also see my notes below on various settings, modules, etc

Because this is such a broad topic, I'll put some links here for the sources I used to configure my
own Manjaro Linux system running the i3wm and polybar.

Alsa / Volume Mixers - Cannot find simple element

Vim Unicode Plugin

Inserting Unicode Characters Into Vim

Polybar Module Documentation

i3 has been altered for various reasons and you may want a different version, i3-gaps is a popular
choice right now as it leaves a configurable amount of space between your windows that gives
some visual relief to your workspace. It looks nice, depending on your opinion. To check it out,
you'll need to REMOVE i3 and reinstall using an alternate version. Run the following commands -

Some basic i3-gaps configurations / settings taken from My Dotfiles Repo -

i3

i3-gaps

sudo apt-get install software-properties-common
Head over to https://launchpad.net/ubuntu/+ppas?name_filter=i3-gaps and pick one.
I chose https://launchpad.net/~kgilmer/+archive/ubuntu/speed-ricer as it was recommended by the owner /
maintainer of i3 on GitHub.

Run the following command to add the PPA to your system (DEBIAN ONLY)
#+ If you are on arch, just use yay AUR manager.
sudo add-apt-repository ppa:kgilmer/speed-rice
sudo apt update
sudo apt install i3-gaps

https://i3wm.org/docs/userguide.html#resizingconfig
https://github.com/polybar/polybar/issues/491
https://github.com/chrisbra/unicode.vim
https://x-team.com/blog/inserting-unicode-characters-in-vim/
https://github.com/polybar/polybar/wiki/Module:-i3
https://github.com/shaunrd0/dot/

###
Settings for i3-gaps
###

Set inner/outer gaps default values
gaps inner 14
gaps outer -2

Additionally, you can issue commands with the following syntax. This is useful to bind keys to changing the
gap size.
gaps inner|outer current|all set|plus|minus <px>
gaps inner all set 10
gaps outer all plus 5

Smart gaps (gaps used if only more than one container on the workspace)
smart_gaps on

Smart borders (draw borders around container only if it is not the only container on this workspace)
on|no_gaps (on=always activate and no_gaps=only activate if the gap size to the edge of the screen is 0)
smart_borders on

Press $mod+Shift+g to enter the gap mode. Choose o or i for modifying outer/inner gaps. Press one of + / -
(in-/decrement for current workspace) or 0 (remove gaps for current workspace). If you also press Shift with
these keys, the change will be global for all workspaces.
set $mode_gaps Gaps: (o) outer, (i) inner
set $mode_gaps_outer Outer Gaps: +|-|0 (local), Shift + +|-|0 (global)
set $mode_gaps_inner Inner Gaps: +|-|0 (local), Shift + +|-|0 (global)
bindsym $mod+Shift+g mode "$mode_gaps"

mode "$mode_gaps" {
 bindsym o mode "$mode_gaps_outer"
 bindsym i mode "$mode_gaps_inner"
 bindsym Return mode "default"
 bindsym Escape mode "default"
}
mode "$mode_gaps_inner" {
 bindsym plus gaps inner current plus 5
 bindsym minus gaps inner current minus 5
 bindsym 0 gaps inner current set 0

X11 can help configure media keys on laptops and aftermarket keyboards to pair with their
intended use by running a command or action when pressed. This can seem confusing to configure,
and may be time consuming at first but once you get the hang of it and know where to look it isn't
all that bad. There is a GUI tool if you'd prefer to use it, but Ill still show how to do this via a
terminal below.

Through a terminal -

 bindsym Shift+plus gaps inner all plus 5
 bindsym Shift+minus gaps inner all minus 5
 bindsym Shift+0 gaps inner all set 0

 bindsym Return mode "default"
 bindsym Escape mode "default"
}
mode "$mode_gaps_outer" {
 bindsym plus gaps outer current plus 5
 bindsym minus gaps outer current minus 5
 bindsym 0 gaps outer current set 0

 bindsym Shift+plus gaps outer all plus 5
 bindsym Shift+minus gaps outer all minus 5
 bindsym Shift+0 gaps outer all set 0

 bindsym Return mode "default"
 bindsym Escape mode "default"
}

Xkeybinds

Install and use GUI xbindkeys-config tool on debian
sudo apt install xbindkeys-config
xbindkeys-config
Use the GUI to set an action (command) to be performed for each key in the list

Capture next keypress and output keycode information to console
xbindkeys --key

Take the above output into your clipboard and vim ~/.xbindkeysrc to add the commands needed.
Below, I configure media keys for volume functionality -

Press combination of keys or/and click under the window.
You can use one of the two lines after "NoCommand"
in $HOME/.xbindkeysrc to bind a key.
"(Scheme function)"
 m:0x0 + c:75
 F9

OR

Capture next multi-keypress and output keycode information to console
xbindkeys --multikey
Press combination of keys or/and click under the window.
You can use one of the two lines after "NoCommand"
in $HOME/.xbindkeysrc to bind a key.
Press combination of keys or/and click under the window.
You can use one of the two lines after "NoCommand"
in $HOME/.xbindkeysrc to bind a key.

--- Press "q" to stop. ---
"(Scheme function)"
 m:0x1 + c:75
 Shift + F9
This will continue to capture until you press Q.

#~/.xbindkeysrc
#

#Volume Up
"pactl set-sink-volume @DEFAULT_SINK@ +10%"
 m:0x0 + c:76
 F10

#Volume Down
"pactl set-sink-volume @DEFAULT_SINK@ -10%"
 m:0x0 + c:75
 F9

Thats it! Above, you could change the pactl set-sink-mute commands to anything youd like to
happen when the F8-10 keys are pressed. After you're done, apply your changes by running
xbindkeys --poll-rc

ArchWiki Resource

If you're having issues using certain keys, try the xev command. There will be a lot more output
than what xbindkeys --key provides, but if pushing the key doesn't send output to xev then your
system is handling the button independent from your OS.

Additionally, you can run xbindkeys_show to show the current settings applied with xbindkeys . This is
useful when debugging to verify you have applied settings correctly and none are being
overwritten or modified.

run sudo ls /sys/class/backlight - if you see intel_backlight there you are in luck, follow the steps below
to configure xbacklight to adjust your display brightness.

#Toggle Audio
"pactl set-sink-mute @DEFAULT_SINK@ toggle"
 m:0x0 + c:74
 F8

Backlight

sudo apt install xbacklight
sudo vim /etc/X11/xorg.conf
If the above file doesnt exisit, make it.
If it does, append the lines below
Section "Device"
 Identifier "Intel Graphics"
 Driver "intel"
 Option "Backlight" "intel_backlight"
EndSection
Save and exit, reboot your PC or logout of your xsession and login again.

Now the below commands should work and can be bound to any key the same way we bound volume keys in
the section above
Decrease brightness by 10%
xbacklight -dec 10
Increase brightness by 10%
xbacklight -inc 10

https://wiki.archlinux.org/index.php/Xbindkeys

Alternately, brightnessctl can be used to control the backlight. Run the following commands,
replacing <YOUR_USERNAME> with the user on your system that you want to use to control
backlight. For me, this was just my primary user, kapper .

Then after a reboot we can run the following command to decrese brightness by 10%

Or to increase brightness by 10%

Useful commands / tools for handling desktop notification dialogs -

git clone https://github.com/Hummer12007/brightnessctl
cd brightnessctl
sudo ./configure && sudo make install
sudo usermod -aG video <YOUR_USERNAME>

brightnessctl s 10%-

Updated device 'intel_backlight':
Device 'intel_backlight' of class 'backlight':
 Current brightness: 14400 (15%)
 Max brightness: 96000

brightnessctl s +10%

Updated device 'intel_backlight':
Device 'intel_backlight' of class 'backlight':
 Current brightness: 24000 (25%)
 Max brightness: 96000

Notification Systems

Install, use notify-send
sudo apt install libnotify-bin
notify-send "Test Notification"

Install kdeconnect for connecting mobile devices on the same network which have been paired using
kdeconnect-cli
sudo apt install kdeconnect

https://github.com/Hummer12007/brightnessctl

Polybar is a simple community driven solution to configuring custom status bars. Generally,
configurations are handled within the ~/.config/polybar/config file, but some specific cases may
require editing other files.

The general requirements of using Polybar is installation via your package manager, for me, this is
pacman . After installing, we need to define our polybars, then configure i3 to handle these settings
for us.

Optionally, polybar can be built from source by running the following commands. This was tested
and worked for me on Ubuntu 20.04.

Be sure to download the KDEconnect app on your mobile device in your respective app store and connect to
the same Wi-Fi network as your PC

list devices with KDEconnect on your network
kdeconnect-cli -l --id-name-only
13b9d56df4c8815b KapperDroid
kdeconnect-cli -l --id-only
13b9d56df4c8815b

Given the ID corresponding with the name you chose for your device within the KDEconmnect app...
kdeconnect-cli --pair -d 13b9d56df4c8815b
Pair requested
Check the KDEconnect app on your phone for the prompt, you may have to open the app and navigate to the
side panel -> 'Add new device'

See help text
kdeconnect-cli -h

Polybar

sudo pacman -Syu polybar

sudo apt install build-essential git cmake cmake-data pkg-config python3-sphinx python3-packaging libuv1-dev
libcairo2-dev libxcb1-dev libxcb-util0-dev libxcb-randr0-dev libxcb-composite0-dev python3-xcbgen xcb-proto
libxcb-image0-dev libxcb-ewmh-dev libxcb-icccm4-dev libxcb-xkb-dev libxcb-xrm-dev libxcb-cursor-dev
libasound2-dev libpulse-dev i3-wm libjsoncpp-dev libmpdclient-dev libcurl4-openssl-dev libnl-genl-3-dev
git clone git@github.com:polybar/polybar.git
cd polybar

https://github.com/polybar/polybar

After installing, we need to configure our bars within ~/.config/polybar/config , then we can simply run
polybar top to run a polybar titled top within said config file.

To start, a default ~/.config/i3/config will contain a block defining the i3status and its settings

We are going to remove this, or comment it all out, and replace it with the exec_always line below.
Now copy the start-polybar.sh script to ~/.config/polybar/ for use with i3 startup configuration below.
This is just telling i3 that we are starting Polybar from a script we've written and stored within the
~/.config/polybar/

./build.sh

Configure i3 for Polybar

bar {
	i3bar_command i3bar
	status_command i3status
	position bottom

please set your primary output first. Example: 'xrandr --output eDP1 --primary'
	tray_output primary
	tray_output eDP1

	bindsym button4 nop
	bindsym button5 nop
 font xft:URWGothic-Book 11
	strip_workspace_numbers yes

 colors {
 background #222D31
 statusline #F9FAF9
 separator #454947

 border backgr. text
 focused_workspace #F9FAF9 #16a085 #292F34
 active_workspace #595B5B #353836 #FDF6E3
 inactive_workspace #595B5B #222D31 #EEE8D5
 binding_mode #16a085 #2C2C2C #F9FAF9
 urgent_workspace #16a085 #FDF6E3 #E5201D
 }
}

directory on initial startup.

My bar { ... } define within ~/.config/i3/config -

Now just press the <Mod><Shift><R> (i3 default setting) to reload i3 and your Polybars should start
up instead of the default i3status

For example, my ~/.config/polybar/config -

Custom startup apps
exec_always --no-startup-id $HOME/.config/polybar/start-polybar.sh

Don't use i3 status bar, comment out this block or remove it entirely
#bar { }

Define Polybars / Modules

[bar/top]
monitor = ${env:MONITOR}
width = 100%
height = 34
background = #00000000
foreground = #ccffffff
line-color = ${bar/bottom.background}
line-size = 16
spacing = 2
padding-right = 5
module-margin = 4
font-0 = NotoSans-Regular:size=8;-1
font-1 = MaterialIcons:size=10;0
font-2 = Termsynu:size=8:antialias=false;-2
font-3 = FontAwesome:size=10;0
font-4 = Unifont:size=8;0
modules-left = powermenu
modules-center = ki3
modules-right = volume wired-network clock

[bar/bottom]
monitor = ${env:MONITOR}
bottom = true

These first two blocks define our top and bottom status bars. Continuing on in the
~/.config/polybar/config file, we see the defines for the modules -

width = 100%
height = 27
background = ${bar/top.background}
foreground = ${bar/top.foreground}
line-color = ${bar/top.background}
line-size = 2
spacing = 3
padding-right = 4
module-margin-left = 0
module-margin-right = 6
font-0 = NotoSans-Regular:size=8;0
font-1 = unifont:size=6;-3
font-2 = FontAwesome:size=8;-2
font-3 = NotoSans-Regular:size=8;-1
font-4 = MaterialIcons:size=10;-1
font-5 = Termsynu:size=8:antialias=false;0

[module/powermenu]
type = custom/menu
format-padding = 5
label-open = ䷡
label-close = X
menu-0-0 = Terminate WM
menu-0-0-foreground = #fba922
menu-0-0-exec = bspc quit -1
menu-0-1 = Reboot
menu-0-1-foreground = #fba922
menu-0-1-exec = menu_open-1
menu-0-2 = Power off
menu-0-2-foreground = #fba922
menu-0-2-exec = menu_open-2
menu-1-0 = Cancel
menu-1-0-foreground = #fba922
menu-1-0-exec = menu_open-0
menu-1-1 = Reboot
menu-1-1-foreground = #fba922
menu-1-1-exec = sudo reboot

menu-2-0 = Power off
menu-2-0-foreground = #fba922
menu-2-0-exec = sudo poweroff
menu-2-1 = Cancel
menu-2-1-foreground = #fba922
menu-2-1-exec = menu_open-0

[module/cpu]
type = internal/cpu
interval = 0.5
format = <label> <ramp-coreload>
label = CPU
ramp-coreload-0 = ▁
ramp-coreload-0-font = 2
ramp-coreload-0-foreground = #aaff77
ramp-coreload-1 = ▂
ramp-coreload-1-font = 2
ramp-coreload-1-foreground = #aaff77
ramp-coreload-2 = ▃
ramp-coreload-2-font = 2
ramp-coreload-2-foreground = #aaff77
ramp-coreload-3 = ▄
ramp-coreload-3-font = 2
ramp-coreload-3-foreground = #aaff77
ramp-coreload-4 = ▅
ramp-coreload-4-font = 2
ramp-coreload-4-foreground = #fba922
ramp-coreload-5 = ▆
ramp-coreload-5-font = 2
ramp-coreload-5-foreground = #fba922
ramp-coreload-6 = ▇
ramp-coreload-6-font = 2
ramp-coreload-6-foreground = #ff5555
ramp-coreload-7 = █
ramp-coreload-7-font = 2
ramp-coreload-7-foreground = #ff5555

[module/clock]
type = internal/date
interval = 2

date = %%{F#999}%Y-%m-%d%%{F-} %%{F#fff}%H:%M%%{F-}

[module/date]
type = internal/date
date =  %%{F#99}%Y-%m-%d%%{F-} %%{F#fff}%H:%M%%{F-}
date-alt = %%{F#fff}%A, %d %B %Y %%{F#fff}%H:%M%%{F#666}:%%{F#fba922}%S%%{F-}

[module/memory]
type = internal/memory
format = <label> <bar-used>
label = RAM
bar-used-width = 30
bar-used-foreground-0 = #aaff77
bar-used-foreground-1 = #aaff77
bar-used-foreground-2 = #fba922
bar-used-foreground-3 = #ff5555
bar-used-indicator = |
bar-used-indicator-font = 6
bar-used-indicator-foreground = #ff
bar-used-fill = ─
bar-used-fill-font = 6
bar-used-empty = -
bar-used-empty-font = 6
bar-used-empty-foreground = #444444

[module/ki3]
type = internal/i3
; Only show workspaces defined on the same output as the bar
;
; Useful if you want to show monitor specific workspaces
; on different bars
;
; Default: false
pin-workspaces = true
; This will split the workspace name on ':'
; Default: false
strip-wsnumbers = true
; Sort the workspaces by index instead of the default
; sorting that groups the workspaces by output
; Default: false

index-sort = true
; Create click handler used to focus workspace
; Default: true
enable-click = false
; Create scroll handlers used to cycle workspaces
; Default: true
enable-scroll = true
; Wrap around when reaching the first/last workspace
; Default: true
wrapping-scroll = true
; Set the scroll cycle direction
; Default: true
reverse-scroll = false
; Use fuzzy (partial) matching on labels when assigning
; icons to workspaces
; Example: code;♚ will apply the icon to all workspaces
; containing 'code' in the label
; Default: false
fuzzy-match = true

[module/volume]
type = internal/alsa
speaker-mixer = IEC958
headphone-mixer = Headphone
headphone-id = 9

format-volume = <ramp-volume> <label-volume>
label-muted =  muted
label-muted-foreground = #66
ramp-volume-0 = 
ramp-volume-1 = 
ramp-volume-2 = 
ramp-volume-3 = 

[module/wired-network]
type = internal/network
interface = net0
interval = 3.0
label-connected =  %{T3}%local_ip%%{T-}

Now that we have our status bars and Polybar Modules defined, we need to configure i3 to use
Polybar instead of the default i3status that comes configured within the bar { ... } block of the i3
config file. See the beginning of this Polybar section for details on adding polybar to i3 instead, if
you haven't already.

If you have one monitor, you can simply run polybar top to start the top status bar created above,
and creating a start script should be straight-forward. If you are using multiple monitors and want
to replicate the status bars across all displays, create the below script within ~/.config/polybar/ ,
name it what you wish, but be sure it corresponds with how you choose to exec_always in your i3
config later on.

label-disconnected-foreground = #66

[module/wireless-network]
type = internal/network
interface = net1
interval = 3.0
ping-interval = 10
format-connected = <ramp-signal> <label-connected>
label-connected = %essid%
label-disconnected =  not connected
label-disconnected-foreground = #66
ramp-signal-0 = 
ramp-signal-1 = 
ramp-signal-2 = 
ramp-signal-3 = 
ramp-signal-4 = 
animation-packetloss-0 = 
animation-packetloss-0-foreground = #ffa64c
animation-packetloss-1 = 
animation-packetloss-1-foreground = ${bar/top.foreground}
animation-packetloss-framerate = 500

Starting Polybar

#!/bin/bash
Author: Shaun Reed | Contact: shaunrd0@gmail.com | URL: www.shaunreed.com
A script placed in ~/.config/polybar/ - Uses ${env:MONITOR}
Starts polybars top and bottom on multiple displays
###

Polybar Startup Script Source

Now, in your ~/.config/polybar/config file, ensure the ${env:MONITOR} environment variable is used to
define the monitors -

Make the script executable and run it, polybar will start with your custom configs -

You may see errors for symbols used in fonts you do not have installed, see below for
troubleshooting information.

To kill all Polybars, run pkill -f polybar

############
start-polybar.sh

Kill any previous polybars
pkill -f polybar

For each monitor in list up to ':'
for m in $(polybar --list-monitors | cut -d":" -f1); do
 # Reload polybars with monitor device name
 MONITOR=$m polybar --reload top &
 MONITOR=$m polybar --reload bottom &
done

[bar/top]
monitor = ${env:MONITOR}
width = 100%
height = 34
background = #00000000
foreground = #ccffffff
Reduced..

sudo chmod a+x start-polybar.sh
./start-polybar.sh

Verify / Install Fonts

https://github.com/polybar/polybar/issues/763

You may run into issues with Unicode characters used in these configurations, see the links /
commands below for help troubleshooting. The goal is usually to track down the font you are
missing and install it, preferably via your system package manager. If you see an error like the
below when starting your Polybars, this is likely the issue

It is important to note that not defining the relevant font in the Polybar definition within
~/.config/polybar/config will result in the same error.

Cross-check that you have the supported fonts installed by searching up your character in a
Unicode Character Search and checking that a relevant font is installed with the below command

This matches the Great Power Hexagram, which I use for my system power options / context menu.

The fc-match command above will output all fonts compatible with that symbol, if there is no
output, see the Supporting Fonts link from the character's search result, and install it via your
package manager.

If it is not installed, search fonts available to install via pacman package manager

If it is installed an the error is still present, see that the corresponding font for the character is
included in the define for the status bar it is used in. For example, to use the Hexagram above, I
added the Unifont:size=8;0 line to my top Polybar definition in ~/.config/polybar/config -

If still having issues, check the following commands for more info / useful output

warn: Dropping unmatched character ▁ (U+2581)

fc-match -s monospace:charset=04de1

sudo pacman -Ss ttf- |grep unicode
sudo pacman -Ss otf- |grep unicode

[bar/top]
monitor = ${env:MONITOR}
font-0 = NotoSans-Regular:size=8;-1
font-1 = MaterialIcons:size=10;0
font-2 = Termsynu:size=8:antialias=false;-2
font-3 = FontAwesome:size=10;0
font-4 = Unifont:size=8;0

Search for installed fonts
fc-list | grep fontname

http://www.fileformat.info/info/unicode/char/search.htm
http://www.fileformat.info/info/unicode/char/4de1/index.htm
http://www.fileformat.info/info/unicode/char/4de1/fontsupport.htm

Arch Wiki - Fonts

Revision #23
Created 13 September 2019 14:25:09 by Shaun Reed
Updated 6 August 2022 15:58:27 by Shaun Reed

https://wiki.archlinux.org/index.php/Fonts

