
Change current user password, prompt for current passwd - passwd
If you can sudo, run sudo passwd <user> to change a user password without prompt for current
password, and with no security restrictions (min length, difficulty, etc)

To remove a user, run sudo userdel username . To remove a user and their files within their
/home/username/ directory, run sudo userdel -r username

Run the following commands to create a new user on Linux -

These commands assume you are root, on a new host, so you do not need to prefix them with
sudo , if you are not root you will need to run sudo adduser <username> , etc.

User Administration
Managing passwords

Removing users

Adding users
For a useful script to speed up this process when adding multiple users, skip to the end of
this guide.

adduser username
Adding user `username' ...
Adding new group `username' (1000) ...
Adding new user `username' (1000) with group `username' ...
Creating home directory `/home/username' ...
Copying files from `/etc/skel' ...
New password:
Retype new password:
passwd: password updated successfully
Changing the user information for username
Enter the new value, or press ENTER for the default
 Full Name []: # You can leave all of this blank, or not
 Room Number []:# Your choice, really
 Work Phone []:

Now, we need to configure the user for sudo access, so we set our preferred text editor and use
sudo -E to preserve our user's environment settings while running commands as sudo.

Find the section within /etc/sudoers called user privilege specification

Modify the file by adding the user to the section as it appears below, granting all permissions -

It's considered better practice to override the /etc/sudoers file by running sudo visudo -f
/etc/sudoers.d/mySudoers - This command will allow us to store our changes in a file independent from
the default sudoer configuration, and also complies with the idea that /etc/sudoer is a sequential
configuration, which means the order in which settings are applied is crucial to how they are
interpreted by our system.

If you feel your sudoer settings are being ignored, consider moving their location in /etc/sudoers to
the end of the file, or use the command above to create a separate configuration, securing the
default settings in the even that a mistake is made, we will still be able to authenticate using sudo.
Save /etc/sudoers and quit, but note that you will need to logout and login again for your changes to
take effect.

If you configured sudo access for your user, make sure you follow the next section to ensure they
are added to the relevant sudo group

 Home Phone []:
 Other []:
Is the information correct? [Y/n] y

Configuring Sudo

Set vim as our preferred editor
export EDITOR=/bin/vim && export VISUAL=/bin/vim
Edit the sudoers file, preserving our current user's environment settings
sudo -E visudo

User privilege specification
root ALL=(ALL:ALL) ALL

User privilege specification
root ALL=(ALL:ALL) ALL
username ALL=(ALL:ALL) ALL

Configure Group Access

Run vigr in the terminal and add your new username created to the sudo group, and any other
groups you may want. This is the same thing as modifying the configuration file /etc/group with
your preferred editor and saving it. (Docker is a common group that users will need added to -
Don't run your containers as root by running sudo docker)

When saving /etc/group , you'll get some output warning you about consistency between a shadow
configuration file. Go ahead and edit it to mirror your changes, and ignore the final warning about
the /etc/group file consistency since we just came from modifying that file.

You should change your user and group IDs from the default sequential values we can assume
Linux has distributed for us. To do this, choose and valid ID and edit the following commands to
suit your needs -

Looking to check current group members? sudo groupmems -l -g groupname

Want to add a single user to a single group? sudo usermod -aG groupname username will -a
append the user to the given group. The -G option alone will remove the user from all
groups other than the one provided.

...
tape:x:26:
sudo:x:27:USERNAME,USERNAME2,USER3
audio:x:29:
docker:x:30:USERNAME,USER3
...

vigr
You have modified /etc/group.
You may need to modify /etc/gshadow for consistency.
Please use the command 'vigr -s' to do so.

vigr -s
You have modified /etc/gshadow.
You may need to modify /etc/group for consistency.
Please use the command 'vigr' to do so.

Securing User / Group IDs

Change user and group IDs
sudo usermod -u 1234 user
sudo groupmod -g 4321 usergroup

Not sure what UID and GID to choose? See the table below and choose a value that suits your
needs - probably a value within an unused range. UID and GID do not need to be the same -
This is only the case by default when adding a user via Linux Distributions such as Ubuntu, which is
the one referenced / used in this guide. Feel free to specify unique values, and research more into
sharing user groups for permissions in scenarios such as granting a list of employees or developers
similar access.

Make sure you edit all the old permissions to reflect the above changes
Use the old user and group IDs here
sudo find / -group 1000 -exec chgrp -h username {} \;
sudo find / -user 1000 -exec chown -h username {} \;

UID/GID Purpose Defined By Listed in

0 `root` user Linux `/etc/passwd` + `nss-
systemd`

1 ... 4 System users Distributions `/etc/passwd`

5 `tty` group `systemd` `/etc/passwd`

6 ... 999 System users Distributions `/etc/passwd`

1000 ... 60000 Regular users Distributions `/etc/passwd` +
LDAP/NIS/…

60001 ... 61183 Unused

61184 ... 65519 Dynamic service
users

`systemd` `nss-systemd`

65520 ... 65533 Unused

65534 `nobody` user Linux `/etc/passwd` + `nss-
systemd`

65535 16bit `(uid_t) -1` Linux

65536 ... 524287 Unused

524288 ...
1879048191

Container UID ranges `systemd` `nss-mymachines`

1879048191 ...
2147483647

Unused

“

You should validate all the configuration done to secure your server - for example, this could be
validated by running the following commands to check UID / GID after setting them and logging
into our user.
Check UID / GID
id -u username
id -g username

If you plan to stop here, be sure to login to your new user before making further changes to your
system.

Using the information on this page, we can create a simple bash script to handle this process for
us. If you plan to add a fair amount of users to a system, automating at least the general portion of
that process might be valuable to you. See the script below to automate up to this point in these
instructions. Simply save it into addusers.sh for example, and run sudo chmod a+x addusers.sh
followed by sudo ./addusers.sh username 1005 where 1005 is the userID you wish to assign to your new
user. Sudo is required here if you wish to assign sudo privileges to the new user.

UID/GID Purpose Defined By Listed in

2147483648 ...
4294967294

HIC SVNT LEONES

4294967295 32bit `(uid_t) -1` Linux

Table Source - Systemd.io

sudo su username
Or
sudo -iu username

Bash Add User Script

Want to call this from the commandline as any other command? Assuming you have the
script marked as an executable placed within your /opt/ directory, run echo "export
PATH=$PATH:/opt/" >> ~/.bash_aliases && source ~/.bashrc You should now be able to run the script
by its current name from any directory on the system - adduser.sh Feel free to rename it

#!/bin/bash
Author: Shaun Reed | Contact: shaunrd0@gmail.com | URL: www.shaunreed.com
A custom bash script for creating new linux users.
Syntax: ./adduser.sh <username> <userID>
###

https://systemd.io/UIDS-GIDS.html#summary

Now after creating this user and following the prompts in the script above, all you'll need to do is
configure the user-specific settings you wish to apply in your case.

The steps in the section below are for generating a SSH key for the remote user you want to use to
login to your server. After completing these steps, the next section will cover adding the public key
we generate to the server's authorize_keys file, and logging into the box remotely.

############

if ["$#" -ne 2]; then
 printf "Illegal number of parameters."
 printf "\nUsage: sudo ./adduser.sh <username> <groupid>"
 printf "\n\nAvailable groupd IDs:"
 printf "\n60001......61183 	Unused | 65520...............65533 Unused"
 printf "\n65536.....524287 	Unused | 1879048191.....2147483647 Unused\n"
 exit
fi

sudo adduser $1 --gecos "First Last,RoomNumber,WorkPhone,HomePhone" --disabled-password --uid $2

printf "\nEnter 1 if $1 should have sudo privileges. Any other value will continue and make no changes\n"
read choice
if [$choice -eq 1] ; then
printf "\nConfiguring sudo for $1...\n"
sudo usermod -G sudo $1
fi

printf "\nEnter 1 to set a password for $1, any other value will exit with no password set\n"
read choice

if [$choice -eq 1] ; then
printf "\nChanging password for $1...\n"
sudo passwd $1
fi

The script pasted above is not updated frequently, and only exists here so the code remains
relevant to the information on this page. This script can be found at gitlab/shaunrd0/klips,
but the version there may have changed slightly since writing the content on this page.

Creating SSH Keys

https://gitlab.com/shaunrd0/klips/-/tree/master/scripts

To make things clear, I will refer to the machines we configure as A and B . The goal is to provide
the necessary configurations on both A and B so that a user on A can use SSH to login to
machine B . Presumably, machine B could be a VPS hosted by DigitalOcean or some other
provider, and machine A could be your personal laptop that you plan to use to admin this server.

SSH should never be authenticated using passwords alone, using public keys generated by ssh-
keygen we can authenticate based on a key we generate and distribute manually to the remote
server configuratioon files, allowing our user to login to the box. This should be done with care, as a
combination of sloppy authorized_keys files and lost or stolen keys can lead to a compromised web
server!

To generate an ed25519 key for our new user, first we should navigate to their ~/.ssh/ directory -
on machine A .

If you run the last above command as sudo, it will create a key for root@host , not the user you are
logged in as.
If you are getting privelege errors, you are not in your home directory. If the ~/.ssh directory does
not exist, create it and navigate within the new directory before running the ssh-keygen command.

You will be asked to answer a series of questions about the key you want to generate. The general
format for filename is user_<keytype> so if our user is called username the file could be named
username_ed25519 . Once answering the questions this will create a public and private key and
output them into your current directory (/home/username/.ssh), you should keep your private key
safe and never share it with anyone. Your public key is what we give to the remote server so they
can verify our identity when logging in.

Once the files are generated, ensure permissions are set approprately for .ssh/ and authorized_keys
file (if it exists)
sudo chmod -R 700 ~/.ssh && sudo chmod 600 ~/.ssh/authorized_keys

Now, on machine B , create a new user following the steps in the sections above, or feel free to
use the adduser.sh script to handle this in one step. Login to this user, just as we did on machine A
, and navigate to their ~/.ssh directory. Again, is this ~/.ssh directory does not exist, just create it
and then navigate within.

Remote User Configuration

sudo su username
cd ~/.ssh/
ssh-keygen -t ed25519

Login Server Configuration

./adduser otherusername 2000
sudo su otherusername

Note that the name of the user on machine B does not need to match the name of the user on
machine A , since we can specify a username with ssh otherusername@0.0.0.0 .

Now that we have the user created on machine B , create an /home/otherusername/.ssh/authorized_keys
text file and open it for editing. Paste in the public key we generated on machine A found at
/home/username/.ssh/username_ed25519.pub . This authorized_keys file is what will be checked for
approved keys when logging into machine B with a certain username. If the user requesting to
login uses any key within it's /home/otherusername/.ssh/authorized_keys file, login access is granted.

Once the files are generated, ensure permissions are set approprately for .ssh/ and authorized_keys
file
sudo chmod -R 700 ~/.ssh && sudo chmod 600 ~/.ssh/authorized_keys

At some point when a password is used in key generation, ssh-keygen generates openssh private
key which doesn't use cipher supported by puttygen.

ssh-keygen doesn't provide option to specify cipher name to encrypt the resulting openssh private
key.

There is a workaround: remove the passphrase from the key before importing into puttygen.

Create a copy of the key to temporarily remove the password
cp ~/.ssh/id_ed25519 ~/.ssh/id_ed25519-for-putty

import the copied key, using the -p argument to specify a request to set a new password, and -f to
specify the import keyfile.

using some command, view the text contents of the private key generated.

cd ~/.ssh

Using Putty with OpenSSH Keys

This section is outdated, as I no longer use Putty for SSH on Windows. When working on
Windows, I tend to run a Linux VM on a seperate monitor, and I just use the VM to ssh
around to boxes I own. I just find this to be easier for me personally. As an alternative, you
could probably just download and use the Ubuntu application on the microsoft store, and
configure SSH as you would on Linux. This would save system resources required to run the
VM, if all you need is a terminal.

ssh-keygen -p -f ~/.ssh/id_ed25519-for-putty
Enter old passphrase: <your passphrase>
Enter new passphrase (empty for no passphrase): <press Enter>
Enter same passphrase again: <press Enter>

copy this output from your ssh session to the machine running Putty

On the windows machine, create a .ssh directory in the users folder who wishes to SSH into the
server (C:\Users\Shaun.ssh)

navigate inside the directory, and create a text file - paste the output from your private key into
this file, file->saveAs In the dropdown 'save as file type', select 'All Files', be sure to end the keyfile
name with the .key extension -> username_ed25519.key click save.

Open puttygen, load convert->import keys.. select the text file we created in C:\Users\Shaun.ssh\
and set the passphrase from puttygen.

Don't forget to shred and remove ~/.ssh_id_ed25519-for-putty afterwards since it is not password
protected.

The new password protected key will authorize the user based on the local password set in putty,
using the remote PUBLIC key stored on the server.

cat id_ed25519-for-putty
-----BEGIN OPENSSH PRIVATE KEY-----
b3BlbnNzaC1rZXktdjEAAAAABG5vbmUAAAAEbm9uZQAAAAAAAAABAAAAMwAAAAtzc2gtZWQyNTUxOQ
AAACCGyjniPP1oVCXqkdCeCKFp+5+5cI7L79rP5RYHJ5Y6fQAAAJh3QGp1d0BqdQAAAAtzc2gtZWQy
NTUxOQAAACCGyjniPP1oVCXqkdCeCKFp+5+5cI7L79rP5RYHJ5Y6fQAAAEBJr8PzmuEN6qNyrY07Lr
LAgZRjo9efYETKqFbS2jVTQobKOeI8/WhUJeqR0J4IoWn7n7lwjsvv2s/lFgcnljp9AAAADmthcHBl
ckBrYXB1bnR1AQIDBAUGBw==
-----END OPENSSH PRIVATE KEY-----

Revision #34
Created 6 April 2019 05:08:22 by Shaun Reed
Updated 18 December 2021 16:37:39 by Shaun Reed

