
Certbot SSL Certificates
Proxy Servers
Web Servers

NGINX
Apache

Protocols

Subnetting
DNS
TCP/IP
OSI Model
TCP / UDP

Networking

Its important to encrypt your web traffic to keep you and anyone who passes information through
your website secure.

To install Certbot and generate an SSL certificate, run the below commands.

Since we passed the certonly argument to certbot , there will not be any automatic configuration of
our NGINX server to use SSL. In my experience using this automatic configuration tool on an NGINX
server that has already been modified from the default settings doesn't work very well, so I'll
explain the required changes to nginx.conf later on this page.

There are a few benefits to using Certbot. Your certificates will automatically be renewed when
nearing expiration, and it can configure several different web servers to use the new SSL certificate
automatically. I personally do the configuring manually, but on a new server the automatic
configuration might be a useful feature to you!

To check on the time left until certbot renews -

Dry run renew with your current configuration -

Check installed certificates on this system -

Certbot SSL Certificates

curl -o- https://raw.githubusercontent.com/vinyll/certbot-install/master/install.sh | bash
Generate a certificate, but don't do any automatic NGINX configuration
sudo certbot certonly --nginx -d domain.com -d www.domain.com

sudo systemctl status certbot.timer

sudo certbot renew --dry-run

sudo certbot certificates
Saving debug log to /var/log/letsencrypt/letsencrypt.log
OCSP check failed for /etc/letsencrypt/live/domain.com/cert.pem (are we offline?)

- -
Found the following certs:
 Certificate Name: domain.com
 Domains: domain.com www.domain.com

Now we need a webserver to redirect traffic over https. The below nginx configuration is verified to
be working on Ubuntu 20.04 using certbot certificates to decrypt the traffic on default port 80, then
passing it to a container hosted locally on a specific port. See the NGINX Book for more details on
configuring nginx.

 Expiry Date: 2020-08-18 03:00:10+00:00 (INVALID: EXPIRED)
 Certificate Path: /etc/letsencrypt/live/domain.com/fullchain.pem
 Private Key Path: /etc/letsencrypt/live/domain.com/privkey.pem
 Certificate Name: other-domain.com
 Domains: other-domain.com www.other-domain.com
 Expiry Date: 2020-08-24 22:16:30+00:00 (VALID: 6 days)
 Certificate Path: /etc/letsencrypt/live/other-domain.com/fullchain.pem
 Private Key Path: /etc/letsencrypt/live/other-domain.com/privkey.pem
- -

NGINX SSL Setup

user www-data;
worker_processes auto;
pid /run/nginx.pid;
include /etc/nginx/modules-enabled/*.conf;

events { }

http {
 include mime.types;

 # Redirect root domains
 server {
 listen 80;
 server_name domain.com www.domain.com;
 return 301 https://www.domain.com$request_uri;
 }

 # SSL - domain.com
 server {
 server_name domain.com www.domain.com;
 server_tokens off;

https://www.knoats.com/books/networking/page/nginx

Sometimes, if your webserver is running already, you may see the following error

To fix this, we can use certbot's --pre-hook and --post-hook options

You can also add executables to the /etc/letsencrypt/renewal-hooks/pre and /etc/letsencrypt/renewal-
hooks/post directories and certbot will automatically handle executing them on a request to renew
certificates, removing the need to specify these arguments each time. See Official Certbot
Documentation for more info. An important point made there can be seen in the quote below

More help can be found within a termianl with sudo certbot --help renew

 listen 443 ssl;
 ssl_certificate /etc/letsencrypt/live/domain.com/fullchain.pem;
 ssl_certificate_key /etc/letsencrypt/live/domain.com/privkey.pem;

 # Pass to container
 location / {
 include proxy_params;
 proxy_pass http://localhost:1234/;
 }
 }

}

Errors

Attempting to renew cert (domain.com) from /etc/letsencrypt/renewal/domain.com.conf produced an
unexpected error: Problem binding to port 80: Could not bind to IPv4 or IPv6.. Skipping.

sudo certbot renew --dry-run --pre-hook 'service nginx stop' --post-hook 'service nginx start'

These hooks are run in alphabetical order and are not run for other
subcommands. (The order the hooks are run is determined by the byte value of
the characters in their filenames and is not dependent on your locale.)

Hooks specified in the command line, configuration file, or renewal configuration
files are run as usual after running all hooks in these directories.

“

https://certbot.eff.org/docs/using.html#renewal
https://certbot.eff.org/docs/using.html#renewal

There are two primary types of proxies, forward and reverse proxy. A proxy masks the IP address
of a client or server by routing requests through another server. Proximity to this remote server
and the average load on this server can impact network speeds.

A forward proxy is often used to mask a client's IP address by routing requests through another
server. The purpose of a forward proxy is to evade detection or firewall rules that would otherwise
impact the client's ability to visit the service. There are Web, HTTP, and SOCKS proxies. Avoid free
proxy services as they are a popular form of data collection used by malicious parties to collect and
potentially exploit your internet traffic. Forward proxies are not only used for malicious purposes,
and can also be used to better organize and enforce server infrastructure rules. For example,
routing requests from a cluster of internal servers through a forward proxy enables you to
configure the single forward proxy instead of each individual server. This can be used to funnel
internal traffic to the external web and better control the traffic and behavior of your infrastructure.

A reverse proxy is a common tactic employed by organizations to implement load balancing
features on high-traffic web services. A service which generates a lot of traffic can route requests
from clients and forward them to any one of a large number of proxy servers. By diverting requests
to through the proxy to the server with the smallest load, we reduce the average load on the server
and can maintain a more consistent service with speed and availability. There is also the added
security benefit of hiding your server's IP address and protecting it from malicious scans and
activity by using a reverse proxy, since the proxy server can be used to filter out bad requests and
protect your infrastructure. NGINX, Apache, and HAProxy are all popular forms of reverse proxy
servers.

Linuxbabe - Forward & reverse Proxies

Proxy Servers
Proxies

Forward Proxy

Reverse Proxy

Resources and Links

https://www.linuxbabe.com/it-knowledge/differences-between-forward-proxy-and-reverse-proxy

JSCAPE - Forward & reverse Proxies

https://www.jscape.com/blog/bid/87783/forward-proxy-vs-reverse-proxy

Web Servers

Web Servers

Install nginx by running the commands below

Before we pass any traffic, we should configure SSL for any domains we want to serve on this host.
To use LetsEncrypt and Certbot to do this, run the commands below.

Certbot installation instructions have changed

The new method of installation, as explained in the above link, is using snap . I very much dislike
snap, because I've been on systems with limited resources and have experienced snap causing
poor performance, especially when installing larger applications with it.

In any case, the new method of installation is below. certbot is an apt package, but the official
instructions do not recommend to use that apt package (so why is it there o.o)

If you installed with apt, remove certbot first, then reinstall with snap.

NGINX
Install

sudo apt update && sudo apt upgrade
sudo apt install nginx

Configure SSL
SSL certificates are limited, see the LetsEncrypt documentation on SSL rate limits for more
information. Take notice of the section about renewals - to avoid regenerating certificates
during testing, run sudo certbot certonly --dry-run -d domain.com -d www.domain.com

sudo apt remove certbot
sudo snap install --classic certbot
sudo certbot certonly --nginx

https://certbot.eff.org/instructions?ws=nginx&os=ubuntufocal
https://letsencrypt.org/docs/rate-limits/

Reading the output generated, we can see where our certificates were created. Take note of
these paths, you will need to refer to these certificates within your /etc/nginx/nginx.conf

There are a few benefits to using Certbot. Your certificates will automatically be renewed when
nearing expiration, and it even configures nginx for you automatically.

Instead of using the default configuration Certbot creates, you can make one yourself. Below, we
create our own nginx configuration from scratch which still uses Certbot to manage SSL
certificates.

A virtual host in NGINX serves content based on settings found within /etc/nginx/nginx.conf , we can
use these settings to do things like handle SSL and pass traffic to other hosts if using a specific sub
domain.

These settings can be modified to suit the needs of a basic host serving one page or
application.Below, we route traffic to a docker container running on a localhost port.

Successfully received certificate.
Certificate is saved at: /etc/letsencrypt/live/git.shaunreed.com/fullchain.pem
Key is saved at: /etc/letsencrypt/live/git.shaunreed.com/privkey.pem
This certificate expires on 2022-04-25.
These files will be updated when the certificate renews.
Certbot has set up a scheduled task to automatically renew this certificate in the background.

Basic NGINX Settings

user www-data;
worker_processes auto;
pid /run/nginx.pid;
include /etc/nginx/modules-enabled/*.conf;

events { }

http {
 include mime.types;

 # Redirect root domains
 server {
 listen 80;
 server_name domain.com www.domain.com;

If serving multiple domains over SSL on one host, see the configuration below for a basic example.
It should look fairly similar to the above.

 return 301 https://www.domain.com$request_uri;

 }

 # SSL - domain.com
 server {
 server_name domain.com www.domain.com;
 server_tokens off;
 listen 443 ssl;
 ssl_certificate /etc/letsencrypt/live/domain.com/fullchain.pem;
 ssl_certificate_key /etc/letsencrypt/live/domain.com/privkey.pem;
 include /etc/letsencrypt/options-ssl-nginx.conf;
 ssl_dhparam /etc/letsencrypt/ssl-dhparams.pem;

 # Pass to container
 location / {
 include proxy_params;
 proxy_pass http://localhost:1234/;
 }

 }

}

Multiple Domains

user www-data;
worker_processes auto;
pid /run/nginx.pid;
include /etc/nginx/modules-enabled/*.conf;

events { }

http {
 include mime.types;

 # Redirect root domains
 server {
 listen 80;
 server_name domain.com www.domain.com;
 return 301 https://www.domain.com$request_uri;
 }

 server {
 listen 80;
 server_name domain2.com www.domain2.com;
 return 301 https://www.domain2.com$request_uri;
 }

 # SSL - domain
 server {
 server_name domain.com www.domain.com;
 server_tokens off;
 listen 443 ssl;
 ssl_certificate /etc/letsencrypt/live/domain.com/fullchain.pem;
 ssl_certificate_key /etc/letsencrypt/live/domain.com/privkey.pem;
 include /etc/letsencrypt/options-ssl-nginx.conf;
 ssl_dhparam /etc/letsencrypt/ssl-dhparams.pem;

 # Pass to container
 location / {
 include proxy_params;
 proxy_pass http://localhost:1234/;
 }

 }

 # SSL - domain2
 server {
 server_name domain2.com www.domain2.com;
 server_tokens off;
 listen 443 ssl;
 ssl_certificate /etc/letsencrypt/live/domain2.com/fullchain.pem; # managed by Certbot

Above, we serve two different applications running on different ports depending on the url request.

Sometimes, especially when hosting multiple domains on one box, you may want to separate the
NGINX logs based on return code and host / domain name referenced. Below we see a nginx.conf
which enables this feature -

 ssl_certificate_key /etc/letsencrypt/live/domain2.com/privkey.pem; # managed by Certbot
 include /etc/letsencrypt/options-ssl-nginx.conf;
 ssl_dhparam /etc/letsencrypt/ssl-dhparams.pem;

 # Pass to second container
 location / {
 include proxy_params;
 proxy_pass http://localhost:4321/;
 }

 }
}

Custom logging

user www-data;
worker_processes auto;
pid /run/nginx.pid;
include /etc/nginx/modules-enabled/*.conf;

events { }

http {
 include mime.types;

 # Redirect root domains for first server
 server {
 listen 80;
 server_name firstsite.com www.firstsite.com;
 return 301 https://www.firstsite.com$request_uri;
 }

 # Redirect root domains for second server
 server {

 listen 80;
 server_name secondsite.com;
 return 301 https://secondsite.com$request_uri;
 }

 # Map the 100-200 error codes to $oks
 map $status $oks {
 ~^[1-2] 1;
 default 0;
 }

 # Map the 400-500 error codes to $errs
 map $status $errs {
 ~^[4-5] 1;
 default 0;
 }

 # Map the 300 error codes to $redir
 map $status $redir {
 ~^[3] 1;
 default 0;
 }

 # SSL - firstsite
 server {
 server_name firstsite.com www.firstsite.com;
 server_tokens off;
 listen 443 ssl;
 ssl_certificate /etc/letsencrypt/live/firstsite.com/fullchain.pem;
 ssl_certificate_key /etc/letsencrypt/live/firstsite.com/privkey.pem;

 # Configure Server-wide logging
 access_log /var/log/nginx/access.log;
 error_log /var/log/nginx/error.log;

 # Configure logs for this domain
 access_log /var/log/nginx/firstsite.log;

 # Configure return-specific logging
 access_log /var/log/nginx/firstsite.access combined if=$oks;

 access_log /var/log/nginx/firstsite.error combined if=$errs;
 access_log /var/log/nginx/firstsite.redir combined if=$redir;

 # Pass to firstsite container
 location / {
 include proxy_params;
 proxy_pass http://localhost:4321/;
 }
 }

 # SSL - secondsite
 server {
 server_name secondsite.com;
 server_tokens off;
 listen 443 ssl;
 ssl_certificate /etc/letsencrypt/live/secondsite.com/fullchain.pem;
 ssl_certificate_key /etc/letsencrypt/live/secondsite.com/privkey.pem;

 # Configure Server-wide logging (to create one log to monitor with fail2ban, ossec, etc)
 access_log /var/log/nginx/access.log;
 error_log /var/log/nginx/error.log;

 # Configure logs for this domain
 access_log /var/log/nginx/secondsite.log;

 # Configure return specific logginng if they match the statuses we mapped
 access_log /var/log/nginx/secondsite.access combined if=$oks;
 access_log /var/log/nginx/secondsite.error combined if=$errs;
 access_log /var/log/nginx/secondsite.redir combined if=$redir;

 # Pass to second container
 location / {
 include proxy_params;
 proxy_pass http://localhost:1234/;
 }

 }
}

Now after running systemctl reload nginx you should notice there are logs for each domain being
created according to your organization above. It can be useful for smaller setups, but would quickly
get out of hand with large amounts of traffic, I'd imagine.

This is at the bottom of the page for a reason. This should only be used for testing, but you can get
away with a very simple nginx configuration if you don't use SSL encryption -

No SSL

user www-data;
worker_processes auto;
pid /run/nginx.pid;
include /etc/nginx/modules-enabled/*.conf;

events { }

http {
 include mime.types;

 # Redirect root domains
 server {
 listen 80;
 server_name domain.com www.domain.com;

 # Pass to container port
 location / {
 include proxy_params;
 proxy_pass http://localhost:1234/;
 }

 }
}

Web Servers

Your Apache installation determines what content to serve based on the DocumentRoot Default
directory.

After installing Apache, there will be a default configuration file located in /etc/apache/enabled-sites/
that contains some VirtualHost configuration settings. It can be modified using Apache modules to
allow Apache to serve our application as our root domain. To do this, we will need to enable one of
the following Apache mods using sudo a2enmod <module name>

So, we run..

After these two modules install, set up your VirtualHost configuration within the
/etc/apache/enabled-sites/ directory as follows:

Apache
Changing your Apache Server Root Directory

DocumentRoot Default = /var/www/html

-document root configured in the following files:
sudo vim /etc/apache2/sites-available/000-default.conf
sudo vim /etc/apache2/apache2.conf

Application Port Settings

sudo a2enmod proxy_http
sudo a2enmod mod_proxy

<VirtualHost *:80>
 ServerAdmin me@mydomain.com
 ServerAlias mydomain.com
 ServerName www.mydomain.com
 ProxyPreserveHost On

 # setup the proxy
 <Proxy *>
 Order allow,deny
 Allow from all

To apply these settings, run sudo systemctl restart apache2.service to restart Apache and reload your
new configuration. If this command returns an error, look closer at your config settings and be sure
you enabled the necessary modules.

 </Proxy>
 ProxyPass / http://www.mydomain.com:8888/
 ProxyPassReverse / http://www.mydomain.com:8888/
</VirtualHost>

Protocols

Protocols

Subnetting is the organization of hosts within smaller networks using subnet masks, which allows
us to route packets to their destination more efficiently. This approach is similiar to what is
employed by delivery services, where the package is first routed to a sorting destination within a
certain range of the final destination. By routing packets through the nearest subnet we reduce the
overhead of traveling long distances and instead we make smaller hops between organized
subnets.

For a single IP address there are 32 bits. This means that the IP 0.0.0.0 is equal to
00000000.00000000.00000000.00000000 in bits. This is an important concept to keep in mind, as it will
help to understand subnet masks later on. When converting these to decimal IP addresses, we
should keep in mind that each octet (set of 8 bits) starts at 27 and ends at 20. So, the IP
11000000.00110000.00001111.00111100 is calculated as follows, where each step is a single octet
converted to decimal form.

1. 11000000 = 1x27 + 1x26 + 0x25 + 0x24 + 0x23 + 0x22 + 0x21 + 0x20 = 192
2. 00110000 = 0x27 + 0x26 + 1x25 + 1x24 + 0x23 + 0x22 + 0x21 + 0x20 = 48
3. 00001111 = 0x27 + 0x26 + 0x25 + 0x24 + 1x23 + 1x22 + 1x21 + 1x20 = 15
4. 00111100 = 0x27 + 0x26 + 1x25 + 1x24 + 1x23 + 1x22 + 0x21 + 0x20 = 60

So the IP 11000000.00110000.00001111.00111100 represented in bits is equal to 192.48.15.60, which is
a class C IP address.

There are 5 classes of IP addresses, which are outlined below.

Class A - From left-to-right, everything before the first . identifies the network, and all other
sections of the IP represent different devices on that network. For example, 127.56.98.102 is on the
127 network, and the device is 56.98.102 . In bits, a class A IP must begin with a single 0 , leaving 7
more bits available to identify the network, and the remaining 24 bits to identify devices within the
network. So, with a class A IP we have 27 (128) possible network ranges, where each range has 224

(16,777,216) IPs available to assign to devices. Thus, class A IPs start at 0.0.0.0 and end at
127.255.255.255 . Class A IPs are used for very large networks, notably those deployed by Internet
Service Providers (ISPs). This is where your public IP adddress lives.

Class B - From left-to-right, everything before the second . identifies the network, and all other
sections of the IP represent different devices on that network. For example, 128.123.58.19 is on the
128.123 network, and the device is 58.19 . In bits, a class B IP must begin with 10 , leaving 14 more
bits available to identify the network, and the remaining 16 bits to identify devices within the
network. So, with a class B IP we have 214 (16,384) possible network ranges, where each range has
216 (65,636) IPs available to assign to devices. Thus, class B IPs start at 128.0.0.0 and end at

Subnetting

191.255.255.255 . These IPs are often used for large networks deployed by enterprises or
organizations with large infrastructure. This is where a company like Google or Amazon would
organize their infrastructure.

Class C - From left-to-right, everything before the third . identifies the network, and all other
sections of the IP represent different devices on that network. For example, 192.48.15.60 is on the
192.48.15 network, and the device is 60 . In bits, a class C IP must begin with 110 , leaving 21 more
bits available to identify the network, and the remaining 8 bits to identify devices within the
network. So, with a class C IP we have 221 (2,097,152) possible network ranges, where each range
has 28 (256) IPs available to assign to devices. Thus, class C IPs start at 192.0.0.0 and end at
223.255.255.255 . These IPs are often used for small business and home networks, and is where your
local IP address lives.

Class D - Class D IPs use all 32 bits for network addressing but they must begin with 1110 , leaving
28 more bits available to identify the multicast IP. For example, 227.63.12.126 is just the
227.63.12.126 multicast IP address with no further identification for a host device. Thus, class D IPs
start at 224.0.0.0 and end at 239.255.255.255 . These addresses are used for multicasting operations
and there are no host devices within this IP class. So, with a class D IP we have 228 (268,435,456)
possible multicast IPs.

Class E - Class E IPs use all 32 bits for network addressing but they must begin with 1111 , leaving
28 more bits available to identify the IP. So, with a class E IP we have 228 (268,435,456) possible
IPs. Thus, class E IPs start at 240.0.0.0 and end at 255.255.255.255 . But these addresses are not
used at all and considered invalid, thus there are no host devices or networks within this IP class.
The only exception is the broadcast IP address which is the same on every network -
255.255.255.255

IP prefixes represent a count of bits used to identify a network, which helps to define the subnet of
available hosts. For example, x.x.x.x/4 uses 4 leading bits to identify the network which can host 2
32 - 4 IP addresses (268,435,456)

All IP subnets possible can be seen in this table, provided at Freecodecamp - Subnet Cheatsheet

https://www.freecodecamp.org/news/subnet-cheat-sheet-24-subnet-mask-30-26-27-29-and-other-ip-address-cidr-network-references/

https://knoats.com/uploads/images/gallery/2022-03/image-1648213525738.png

PCMag - IP Addresses

paessler - IP Addresses

Cloudflare - Subnetting

Pearson - Subnetting

https://www.pcmag.com/news/the-abcs-of-ip-addresses
https://www.paessler.com/it-explained/ip-address
https://www.cloudflare.com/learning/network-layer/what-is-a-subnet/
https://www.pearsonitcertification.com/articles/article.aspx?p=1843891

Protocols

To configure basic DNS for a new domain, we will only really need to create two records, after
ensuring our nameservers are pointed to the correct location.

If you are just messing around with NGINX or Apache, there is no real need to purchase a domain
to simply resolve your IP with DNS. Check out Freenom for a free domain name, granted it may not
be your first choice - but they provide a wide range of free domains for up to 12 months.

A nameserver defines the path the DNS will take to resolve your domain name's IP address. If you
purchased your domain already, chances are you created an account with the vendor you
purchased from. Login to this account, and locate a 'DNS Records / Settings' panel to modify your
DNS records using the vendors supplied control panel. If you would rather use another control
panel, for example DigitalOcean, you would need to login to your domain provider's control panel
and alter your domain's nameservers to reflect the below -

This allows your domain to resolve using the appropriate servers on which we have set our DNS
records using their respective control panels.

To get started using our new domain, we will only need the below basic DNS settings -

Type Hostname Value TTL

A www.website.com 0.0.0.0 3600

A @.website.com 0.0.0.0 3600

A *.website.com 0.0.0.0 3600

DNS
Basic Settings

Nameservers

ns1.digitalocean.com
ns2.digitalocean.com
ns3.digitalocean.com

DNS Records

https://my.freenom.com

These basic settings will allow you to further configure DNS on the host directly using a webserver
if you so choose, or if you'd rather the interface using the control panel associated with your
nameservers is fine as well.

An A record maps an IPv4 address to a domain name. This determines where to direct any requests
for a domain name.

An AAAA record, also called a Quad A record, maps an IPv6 address to a domain name. This
determines where to direct requests for a domain name in the same way that an A record does for
IPv4 addresses.

A CNAME record defines an alias for an A record; it points one domain to another domain instead of
to an IP address. When the associated A record’s IP address changes, the CNAME will follow to the
new address.

An MX record specifies the mail servers responsible for accepting email on behalf of your domain.
Providers often make multiple name servers available so that if one is offline, another can respond.
Each server needs its own MX record.

An NS record specifies the name servers, or servers that provide DNS services, for a domain or
subdomain. You can use these to direct part of your traffic to another DNS service or to delegate
DNS administration for a subdomain.

In general, when we visit google.com for example, these are the steps that are taken to resolve the
destination IP address, which is resolved from right-to-left.

1. Client queries google.com via some application
2. The browser checks if the DNS entry is within the local cache, then the OS checks it's local

cache. If either is found to exist it returns it to the client immediately and the DNS
resolution is complete; Otherwise, continue to next step

3. Client query is sent to router on the LAN
4. The router sends the query to the DNS Recursive Resolver if there is no entry in the cache

DNS Record Types / Definitions
A Records

AAAA Records

CNAME Records

MX Records

NS Records

Web Query Path

5. The DNS Recursive Resolver routes the request the the DNS Root Nameserver (.)
6. The Root server responds with the Top Level Domain (TLD) DNS server (.com , .net , .io ,

etc)
7. The DNS Recursive Resolver routes the query to the TLD server
8. The TLD server responds with the destination IP of the domain's nameserver (

shaunreed.com , google.com , etc)
9. The Recursive Resolver sends the request to the domain's Authoratative Nameserver

10. If the request has a subdomain (like git.shaunreed.com), the Authoratative Nameserver
returns the final DNS Authoratative nameserver that is responsible for storing the
subdomain's CNAME record. If there is no subdomain, this step is skipped and the
destination IP is returned

11. The final DNS Authoratative Nameserver returns the destination IP address back to the
Recursive Resolver

12. The Recursive Resolver returns the resolved destination IP address to the router which
initially sent the query

13. The router delivers the resolved destination IP to the client IP that initially requested it on
the router's LAN

14. The client caches the result in the OS and web browser, assigning a Time To Live (TTL)
value to indicate when the cached result should expire

Once all of these steps are completed, or a cached result is returned, the client's actual request is
carried out to the destination. This is true whether the request is HTTP, HTTPS, FTP, or any other
protocol within the Application layer of the TCP/IP or OSI network models.

On Ubuntu Linux systems, Mozilla stores the cache in ~/.cache/mozilla , where everything from DNS
resolutions, mozilla settings, and images / thumbnails are cached.

On Ubuntu Linux systems, by default the systemd-resolved service is enabled but the
/etc/systemd/resolved.conf has a default Cache value of no-negative , which means the service will
not cache DNS resolutions on an OS level.

Cloudflare - DNS

Resources and Links

https://man7.org/linux/man-pages/man8/systemd-resolved.service.8.html
https://man7.org/linux/man-pages/man5/resolved.conf.5.html
https://www.cloudflare.com/learning/dns/what-is-dns/

Protocols

Transmission Control Protocol / Internet Protocol describes the standardization of packet
construction and routing between software and network destinations, respectively. This means that
TCP/IP allows software to be created without the overhead of determining how communication
packets should be constructed for each individual piece of software. This abstraction simplifies the
development process by providing a well-defined process for all software that intends to
communicate between devices within the network. This simplification is also seen on the receiving
end, since we know how the packets were constructed before being broken down into bits and sent
over the wire, we can also reconstruct them in a similar manner on the receiving end of the
transmission.

The term TCP/IP describes the connectivity between the TCP and IP protocols. The TCP protocol
describes how packets should be constructed and maintains the reliable connection for the data to
be sent. The IP protocol describes where to deliver the data, and handles routing to the appropriate
destination. When used together, we have a reliable connection between two machines across the
network.

The joining of the two individual protocols gives us TCP/IP which contains the following layers, in
this order. Note that this order represents the sending device, and receiving devices will actually
traverse these layers backwards while reconstructing the data to the same format in which it was
originally sent.

4. Application
3. Transport
2. Internet
1. Host-to-Network

These two protocols are used together so often that the term TCP/IP is commonly used in place of
referring to TCP or IP individually.

Describes the application or interface that the user interacts with, such as a web browser, chat
service, or email application.

This layer depends upon the subsequent layers to handle packet construction, routing, and delivery
via physical infrastructure.

Protocols in this layer are HTTP, HTTPS, DNS, FTP, and Telnet

TCP/IP

Application

The Transport layer is responsible for providing a reliable connection between two devices on a
network. With a reliable connection the data is broken down into smaller packets which can then
be sent over the wire and reconstructed on the receiving end.

Upon receiving the packets, the recipient sends an ACK (acknolwedgement) of the packet having
been received, and then the sender replies with an additional ACK to indicate that it is aware the
packet reached it's destination.

This layer depends on subsequent layers to route the packet to the correct destination, and to
provide the physical infrastructure which connects the devices within the same network.

Protocols for this layer are TCP and UDP, or Transmission Control Protocol and User Datagram
Protocol.

The Internet layer is sometimes referred to as the Network layer due to it being renamed within the
OSI model, which we will talk about later on this page. This layer is responsible for routing the
packets to the correct destination, and handles efficiently delivering the packets by finding the
shortest or least-used path available between the two devices on the network.

This layer depends on the Datalink layer to provide the physical infrastructure that allows
connectivity between the two devices on the network.

The IP protocol is used in this layer, along with ARP and ICMP

The Host-to-Networ layer is sometimes referred to as the Data Link layer, Network Access layer, or
the Physical layer. This layer is responsible for facillitating the physical connections and
infrastructure between two devices within the same network. Examples of this

Protocols for this layer are DSL, LAN, SATNET, SONET, WiFi (802.11), and Ethernet (802.3)

TechTarget - TCP/IP

Avast - TCP/IP

Cloudflare - TCP/IP

Transport

Internet

Host-to-Network

Resources and Links

https://www.techtarget.com/searchnetworking/definition/TCP-IP
https://www.avast.com/c-what-is-tcp-ip
https://www.cloudflare.com/learning/ddos/glossary/tcp-ip/

Protocols

Open System Interconnection Model breaks the TCP/IP protocol down into more specific layers with
more specific responsibilities.

The layers of the OSI model appear in this order when information is being sent out from the host
machine. If information is being received, the layers would be traversed in reverse order from 1-7

7. Application
6. Presentation
5. Session
4. Transport
3. Network
2. Data Link
1. Physical

The Application layer is the interface or software that the user interacts with in order to send
communications over the network. This could be a web browsers, chat services, or email clients.
This layer is where the application's protocol lives.

This layer is generally the same as the Application layer of the TCP/IP model.

Protocols in this layer are HTTP, HTTPS, DNS, SMTP, ICMP, FTP, and Telnet

The Presentation layer is responsible for converting data into a standardized format which can
optionally be encrypted or compressed before being sent across the wire. Thus, the Presentation
layer is responsible for converting data into a format which can either be used by the Application
layer, or passed down to the Session layer to later be sent over the wire to another device on the
network.

If the application wanted to encrypt the data, this layer would do so. Similarly, if the data this layer
receives is encrypted, this layer decrypts the data so the receiving Application can use it.

OSI Model
OSI

Application

Presentation

Session

The Session layer is responsible for establishing and maintaining a reliable connection between
applications and/or devices on the network. This layer is not always used, but services such as
streaming video and audio would use this layer heavily, or in the case of monitoring remote system
resources or logs.

If you are familiar with sockets in programming, think of this layer as the creation of a socket
between a local or remote application that may either be on the machine locally or on a remote
server.

This layer is also responsible for creating checkpoints during large data transfers, which enables
the download to pick up where it left off in the case of an interruption. If it were not for this layer,
the download would need to be restarted from the beginning in order to ensure that all the
information was sent over the wire.

The Transport layer is responsible for establishing and maintaining a reliable end-to-end connection
between two devices on different networks. If the devices are on the same network, this layer is
not used.

When data is being sent, this layer breaks the data down into smaller segments before sending it
across the wire. When data is being received, this layer reconstructs the data into its original
format.

By the sender, multiplexing is used to package local application data and send it over to the
destination where demultiplexing is used in order to determine which application the message is
intended for.

This layer is also responsible for error and flow control. Flow control describes the process of
ensuring that the data was received using ACK signals and responses. Error control refers to the
process of ensuring that the data is in the same format as it was when it was initially sent, and it
has not been malformed during transmission.

Protocols for this layer are TCP and UDP, or Transmission Control Protocol and User Datagram
Protocol.

The Network layer is where the IP protocol lives, which as we know is responsible for routing
packets to the correct destination. This layer ensures the most efficient path to the destination is
used based on transmission speed and the current load. This is where packets are created.

The IP protocol is used in this layer, along with ARP and ICMP

Transport

Network

Data Link

The Data Link layer manages how the host device interface with the network adapter. Thus, the
Data Link layer manages the communication between two devices on the same network.

When data is being sent, this layer takes packets and breaks them down into frames. These frames
are then sent to the physical layer for transimission.

Protocols for this layer are DSL, LAN, SATNET, SONET, WiFi (802.11)

The Physical layer is made up of the physical equipment and infrastructure which facilitates the
connection between two devices. This layer transmits data only as 1's and 0's, called signals, which
is then interpreted on the receiving end to reconstruct the data by following the OSI model in
reverse.

The Ethernet (802.3) protocol would live on this layer, since it is a physical connection between
machines

Pearson - OSI Model

Cloudflare - OSI Model

Physical

Resources and Links

https://www.pearsonitcertification.com/articles/article.aspx?p=1868070
https://www.cloudflare.com/learning/ddos/glossary/open-systems-interconnection-model-osi/

Protocols

Transmission Control Protocol

In TCP, the client must first contact the server and request to connect to socket which the server
has been configured to listen on. The server accepts the connection and creates a new socket for
communicating with the client, so there can simultaneously be several connections at once. In TCP,
there is error detection and data is received in the order it is sent. This error detection comes at
the cost of speed, when compared to UDP.

TCP connections are established with the following steps

1. Bind socket to listen on server
2. Create request from client to connect to socket
3. Accept connection request and provide the server with a unique socket for

communicating with this new connection

A bytestream is transmitted over a connection oriented channel and is a constant stream of data
from a source to a destination. Since this happens on a connection oriented channel, bytestreams
are constant and are only lost if the connection is closed.

A few protocols which use TCP connections are HTTP, HTTPS, SMTP, POP, and FTP.

First, we should distinguish between a SSL session and connection.

A session can have multiple connections at any given time. SSL sessions are cached by the
browser, typically until the browser is closed entirely but this may vary depending on browser and
configurations. SSL sessions are also remembered by the server itself, which is also configurable on
the back-end of the server but typically these sessions can last anywhere from 10 minutes to 10
hours. When a session is established, a master secret is created for the client, along with two
random values - one for the client from the server, and one for the server from the client.

When a new connection is established within a valid session, new symmetric keys are established
for-each connection. This is because the symmetric keys are derived from the master secret and

TCP / UDP
TCP

TCP SSL Handshake

the random values provided by both the client and server. Using these three values, symmetric
keys are created for-each connection under any given session. Typically, a server will close
connections after 1-2 minutes of inactivity and thus a new handshake will be required in order to
establish a new connection.

Symmetric keys are only stored in RAM. This means if you shut down your device you can
guarentee that a new handshake will occur the next time a HTTPS request is made to the server.

The steps required for a successful TCP SSL Handshake are seen below

1. Client sends hello message to the server, including a TLS version supported by the client,
the cipher suites supported by the client, and a string of random bytes called the client
random

2. The server responds with a hello message sent to the client, including the SSL certificate,
the cipher suite used by the server, and a random string of bytes called the server random

3. The client verifies the SSL certificate with the Certificate Autority that issued the
certificate, confirming the server is who it claims to be

4. The client sends one final random string of bytes called the master secret , which is
encrypted using the server's public key which was provided with the SSL certificate from
the previous steps

5. The server decrypts the master secret string using it's private key
6. Both the server and the client produce a session key using the client random , server random ,

and master secret . Since both the client and the server produce their own session key from
the same ingredients, they both arrive at the same result and have matching session keys

7. The client sends a finished message encrypted with it's session key
8. The server sends a finished message encrypted with it's session key
9. Symmetric encryption has been established, and the handshake has completed. Secure

communication can continue between the client and the server.

It is worth noting that depending on the cipher suite selected by the server in step 2, asymmetric
encryption may or may not be used in the steps above. This means that steps 4-6 can vary
depending on the cipher suite.

User Datagram Protocol

In UDP, there is no connection between a client and a server, packets may be sent out of order,
and packets may be lost. The data keeps transmitting regardless, the sender using an IP and port
which the recipient can derive from the datagram. UDP does not check for errors, and as a result
has a faster speed than TCP connections. Since UDP is conectionless, there are no steps to
establish a UDP connection.

UDP

UDP would be preferred in situations where data transfer does not stop if a segment is lost, like
streaming a video or playing an online multiplayer game

A datagram is transmitted over a connectionless communication channel and represents just one
part of a message being sent. Datagrams can be lost during transmission and resent.

Cloudflare - TLS SSL Handshake

SSL.com - SSL/TLS Handshake

StackOverflow - SSL Session & Connection

Resources and Links

https://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/
https://www.ssl.com/article/ssl-tls-handshake-overview/
https://security.stackexchange.com/a/55477

