
Install nginx by running the commands below

Before we pass any traffic, we should configure SSL for any domains we want to serve on this host.
To use LetsEncrypt and Certbot to do this, run the commands below.

Certbot installation instructions have changed

The new method of installation, as explained in the above link, is using snap . I very much dislike
snap, because I've been on systems with limited resources and have experienced snap causing
poor performance, especially when installing larger applications with it.

In any case, the new method of installation is below. certbot is an apt package, but the official
instructions do not recommend to use that apt package (so why is it there o.o)

If you installed with apt, remove certbot first, then reinstall with snap.

NGINX

Install

sudo apt update && sudo apt upgrade
sudo apt install nginx

Configure SSL
SSL certificates are limited, see the LetsEncrypt documentation on SSL rate limits for more
information. Take notice of the section about renewals - to avoid regenerating certificates
during testing, run sudo certbot certonly --dry-run -d domain.com -d www.domain.com

sudo apt remove certbot
sudo snap install --classic certbot
sudo certbot certonly --nginx

https://certbot.eff.org/instructions?ws=nginx&os=ubuntufocal
https://letsencrypt.org/docs/rate-limits/

Reading the output generated, we can see where our certificates were created. Take note of
these paths, you will need to refer to these certificates within your /etc/nginx/nginx.conf

There are a few benefits to using Certbot. Your certificates will automatically be renewed when
nearing expiration, and it even configures nginx for you automatically.

Instead of using the default configuration Certbot creates, you can make one yourself. Below, we
create our own nginx configuration from scratch which still uses Certbot to manage SSL
certificates.

A virtual host in NGINX serves content based on settings found within /etc/nginx/nginx.conf , we can
use these settings to do things like handle SSL and pass traffic to other hosts if using a specific sub
domain.

These settings can be modified to suit the needs of a basic host serving one page or
application.Below, we route traffic to a docker container running on a localhost port.

Successfully received certificate.
Certificate is saved at: /etc/letsencrypt/live/git.shaunreed.com/fullchain.pem
Key is saved at: /etc/letsencrypt/live/git.shaunreed.com/privkey.pem
This certificate expires on 2022-04-25.
These files will be updated when the certificate renews.
Certbot has set up a scheduled task to automatically renew this certificate in the background.

Basic NGINX Settings

user www-data;
worker_processes auto;
pid /run/nginx.pid;
include /etc/nginx/modules-enabled/*.conf;

events { }

http {
 include mime.types;

 # Redirect root domains
 server {
 listen 80;
 server_name domain.com www.domain.com;

If serving multiple domains over SSL on one host, see the configuration below for a basic example.
It should look fairly similar to the above.

 return 301 https://www.domain.com$request_uri;

 }

 # SSL - domain.com
 server {
 server_name domain.com www.domain.com;
 server_tokens off;
 listen 443 ssl;
 ssl_certificate /etc/letsencrypt/live/domain.com/fullchain.pem;
 ssl_certificate_key /etc/letsencrypt/live/domain.com/privkey.pem;
 include /etc/letsencrypt/options-ssl-nginx.conf;
 ssl_dhparam /etc/letsencrypt/ssl-dhparams.pem;

 # Pass to container
 location / {
 include proxy_params;
 proxy_pass http://localhost:1234/;
 }

 }

}

Multiple Domains

user www-data;
worker_processes auto;
pid /run/nginx.pid;
include /etc/nginx/modules-enabled/*.conf;

events { }

http {
 include mime.types;

 # Redirect root domains
 server {
 listen 80;
 server_name domain.com www.domain.com;
 return 301 https://www.domain.com$request_uri;
 }

 server {
 listen 80;
 server_name domain2.com www.domain2.com;
 return 301 https://www.domain2.com$request_uri;
 }

 # SSL - domain
 server {
 server_name domain.com www.domain.com;
 server_tokens off;
 listen 443 ssl;
 ssl_certificate /etc/letsencrypt/live/domain.com/fullchain.pem;
 ssl_certificate_key /etc/letsencrypt/live/domain.com/privkey.pem;
 include /etc/letsencrypt/options-ssl-nginx.conf;
 ssl_dhparam /etc/letsencrypt/ssl-dhparams.pem;

 # Pass to container
 location / {
 include proxy_params;
 proxy_pass http://localhost:1234/;
 }

 }

 # SSL - domain2
 server {
 server_name domain2.com www.domain2.com;
 server_tokens off;
 listen 443 ssl;
 ssl_certificate /etc/letsencrypt/live/domain2.com/fullchain.pem; # managed by Certbot

Above, we serve two different applications running on different ports depending on the url request.

Sometimes, especially when hosting multiple domains on one box, you may want to separate the
NGINX logs based on return code and host / domain name referenced. Below we see a nginx.conf
which enables this feature -

 ssl_certificate_key /etc/letsencrypt/live/domain2.com/privkey.pem; # managed by Certbot
 include /etc/letsencrypt/options-ssl-nginx.conf;
 ssl_dhparam /etc/letsencrypt/ssl-dhparams.pem;

 # Pass to second container
 location / {
 include proxy_params;
 proxy_pass http://localhost:4321/;
 }

 }
}

Custom logging

user www-data;
worker_processes auto;
pid /run/nginx.pid;
include /etc/nginx/modules-enabled/*.conf;

events { }

http {
 include mime.types;

 # Redirect root domains for first server
 server {
 listen 80;
 server_name firstsite.com www.firstsite.com;
 return 301 https://www.firstsite.com$request_uri;
 }

 # Redirect root domains for second server
 server {

 listen 80;
 server_name secondsite.com;
 return 301 https://secondsite.com$request_uri;
 }

 # Map the 100-200 error codes to $oks
 map $status $oks {
 ~^[1-2] 1;
 default 0;
 }

 # Map the 400-500 error codes to $errs
 map $status $errs {
 ~^[4-5] 1;
 default 0;
 }

 # Map the 300 error codes to $redir
 map $status $redir {
 ~^[3] 1;
 default 0;
 }

 # SSL - firstsite
 server {
 server_name firstsite.com www.firstsite.com;
 server_tokens off;
 listen 443 ssl;
 ssl_certificate /etc/letsencrypt/live/firstsite.com/fullchain.pem;
 ssl_certificate_key /etc/letsencrypt/live/firstsite.com/privkey.pem;

 # Configure Server-wide logging
 access_log /var/log/nginx/access.log;
 error_log /var/log/nginx/error.log;

 # Configure logs for this domain
 access_log /var/log/nginx/firstsite.log;

 # Configure return-specific logging
 access_log /var/log/nginx/firstsite.access combined if=$oks;

 access_log /var/log/nginx/firstsite.error combined if=$errs;
 access_log /var/log/nginx/firstsite.redir combined if=$redir;

 # Pass to firstsite container
 location / {
 include proxy_params;
 proxy_pass http://localhost:4321/;
 }
 }

 # SSL - secondsite
 server {
 server_name secondsite.com;
 server_tokens off;
 listen 443 ssl;
 ssl_certificate /etc/letsencrypt/live/secondsite.com/fullchain.pem;
 ssl_certificate_key /etc/letsencrypt/live/secondsite.com/privkey.pem;

 # Configure Server-wide logging (to create one log to monitor with fail2ban, ossec, etc)
 access_log /var/log/nginx/access.log;
 error_log /var/log/nginx/error.log;

 # Configure logs for this domain
 access_log /var/log/nginx/secondsite.log;

 # Configure return specific logginng if they match the statuses we mapped
 access_log /var/log/nginx/secondsite.access combined if=$oks;
 access_log /var/log/nginx/secondsite.error combined if=$errs;
 access_log /var/log/nginx/secondsite.redir combined if=$redir;

 # Pass to second container
 location / {
 include proxy_params;
 proxy_pass http://localhost:1234/;
 }

 }
}

Now after running systemctl reload nginx you should notice there are logs for each domain being
created according to your organization above. It can be useful for smaller setups, but would quickly
get out of hand with large amounts of traffic, I'd imagine.

This is at the bottom of the page for a reason. This should only be used for testing, but you can get
away with a very simple nginx configuration if you don't use SSL encryption -

No SSL

user www-data;
worker_processes auto;
pid /run/nginx.pid;
include /etc/nginx/modules-enabled/*.conf;

events { }

http {
 include mime.types;

 # Redirect root domains
 server {
 listen 80;
 server_name domain.com www.domain.com;

 # Pass to container port
 location / {
 include proxy_params;
 proxy_pass http://localhost:1234/;
 }

 }
}

Revision #19
Created 25 April 2019 17:59:03 by Shaun Reed
Updated 25 January 2022 19:51:44 by Shaun Reed

