Fail2Ban

Links & Installation

Fail2ban Documentation

Linode Fail2ban Guide

sudo yum install fail2ban
sudo apt install fail2ban

sudo pacman -Syu fail2ban

etc..

Configuration Files

/etc/fail2ban/

To modify configs, copy any fail2ban.conf to fail2ban.local and modify the copied fail2ban.local

configuration file. Fail2ban will automatically override the settings in fail2ban.conf with those in
fail2ban.local

sudo cp /etc/fail2ban/fail2ban.conf /etc/fail2ban/fail2ban.local

This file is also not intended to be modified directly. Run the command below to create a local
configuration to edit -

sudo cp /etc/fail2ban/jail.conf /etc/fail2ban/jail.local

jail.local

This file holds all of your local fail2ban settings for this host. Some of the important lines and
settings to look at are seen below

e ignoreip
o An IP address for fail2ban to ignore
e Mmaxrety
o Number of retries before being locked out

https://www.fail2ban.org/wiki/index.php/MANUAL_0_8
https://www.linode.com/docs/security/using-fail2ban-for-security/

#... File Reduced ...

Destination email address used solely for the interpolations in
jail.{conf,local,d/*} configuration files.

destemail = user@gmail.com

Sender email address used solely for some actions

sender = admin@hostname

E-mail action. Since 0.8.1 Fail2Ban uses sendmail MTA for the
mailing. Change mta configuration parameter to mail if you want to
revert to conventional 'mail'.

mta = mail

Default protocol

protocol = tcp

#... File Reduced ...

Choose default action. To change, just override value of 'action' with the
interpolation to the chosen action shortcut (e.g. action_mw, action_mwl, etc) in jail.local
globally (section [DEFAULT]) or per specific section

action = %(action_mwl)s

#
JAILS
#

#
SSH servers

#

[sshd]

To use more aggressive sshd modes set filter parameter "mode" in jail.local:

normal (default), ddos, extra or aggressive (combines all).

See "tests/files/logs/sshd" or "filter.d/sshd.conf" for usage example and[Definition]

failregex = ~<HOST> - *GET.*(\.php|\.asp|\.exe|\.pl|\.cgi|\.scqgi)

ignoreregex = details.

#mode = normal

enabled = true

port =22

logpath = %(sshd_log)s
backend = %(sshd_backend)s

#... File Reduced ...

[nginx-http-auth]

enabled = true
port = http,https

logpath = %(nginx_error_log)s

To use 'nginx-limit-req' jail you should have “ngx_http_limit_req_module’

and define "limit_req” and "limit_req_zone" as described in nginx documentation
http://nginx.org/en/docs/http/ngx_http_limit_req_module.html

or for example see in 'config/filter.d/nginx-limit-req.conf

[nginx-limit-req]

port = http,https

logpath = %(nginx_error_log)s

[nginx-botsearch]

enabled = true
port = http,https
logpath = %(nginx_error_log)s

maxretry = 2

#... File Reduced ...

its important to notice the line action = %(action_mwl)s - this line defines which default action we will
take when a fail2ban is broken. These actions are defined within our jail.local , but Ill paste them
here as well

Action shortcuts. To be used to define action parameter
Default banning action (e.qg. iptables, iptables-new,

iptables-multiport, shorewall, etc) It is used to define

action_* variables. Can be overridden globally or per

section within jail.local file
banaction = iptables-multiport

banaction_allports = iptables-allports

The simplest action to take: ban only
action_ = %(banaction)s[name=%(__name__)s, bantime="%(bantime)s", port="%(port)s",

protocol="%(protocol)s", chain="%(chain)s"]

ban & send an e-mail with whois report to the destemail.
action_mw = %(banaction)s[name=%(__name__)s, bantime="%(bantime)s", port="%(port)s",
protocol="%(protocol)s", chain="%(chain)s"]

%(mta)s-whois[name=%(__name__)s, sender="%(sender)s", dest="%(destemail)s",

protocol="%(protocol)s", chain="%(chain)s"]

ban & send an e-mail with whois report and relevant log lines
to the destemail.
action_mwl = %(banaction)s[name=%(__name__)s, bantime="%(bantime)s", port="%(port)s",
protocol="%(protocol)s", chain="%(chain)s"]
%(mta)s-whois-lines[name=%(__name__)s, sender="%(sender)s", dest="%(destemail)s",

logpath=%(logpath)s, chain="%(chain)s"]

See the IMPORTANT note in action.d/xarf-login-attack for when to use this action

#

ban & send a xarf e-mail to abuse contact of IP address and include relevant log lines

to the destemail.

action_xarf = %(banaction)s[name=%(__name__)s, bantime="%(bantime)s", port="%(port)s",
protocol="%(protocol)s", chain="%(chain)s"]

xarf-login-attack[service=%(__name__)s, sender="%(sender)s", logpath=%(logpath)s, port="%(port)s"]

ban IP on CloudFlare & send an e-mail with whois report and relevant log lines

to the destemail.

action_cf mwl = cloudflare[cfuser="%(cfemail)s", cftoken="%(cfapikey)s"]
%(mta)s-whois-lines[name=%(__name__)s, sender="%(sender)s", dest="%(destemail)s",

logpath=%(logpath)s, chain="%(chain)s"]

Report block via blocklist.de fail2ban reporting service API

#

See the IMPORTANT note in action.d/blocklist_de.conf for when to use this action.

Specify expected parameters in file action.d/blocklist_de.local or if the interpolation

“action_blocklist_de™ used for the action, set value of “blocklist_de_apikey"

in your “jail.local® globally (section [DEFAULT]) or per specific jail section (resp. in

corresponding jail.d/my-jail.local file).

#

action_blocklist_ de = blocklist_de[email="%(sender)s", service=%(filter)s, apikey="%(blocklist_de_apikey)s",

agent="%(fail2ban_agent)s"]

Report ban via badips.com, and use as blacklist

#

See BadIPsAction docstring in config/action.d/badips.py for

documentation for this action.

#

NOTE: This action relies on banaction being present on start and therefore
should be last action defined for a jail.

#

action_badips = badips.py[category="%(__name__)s", banaction="%(banaction)s", agent="%(fail2ban_agent)s"]
#

Report ban via badips.com (uses action.d/badips.conf for reporting only)
#

action_badips_report = badips[category="%(__name__)s", agent="%(fail2ban_agent)s"]

Report ban via abuseipdb.com.

#

See action.d/abuseipdb.conf for usage example and details.
#

action_abuseipdb = abuseipdb

You can use any action above that you'd like, and even create your own or modify them as you see
fit.

Custom Jails

Using Regex and fail2ban's filters, we can create our own jails within fail2ban to define rules
specific to requests we may be recieving on our application. For example, add the below to
/etc/fail2ban/jail.local to define a rule to block attempts to run scripts on the webserver.

Add these lines to /etc/fail2ban/jail.local

[nginx-noscript]

enabled = true
port = http,https

filter = nginx-noscript

logpath = /var/log/nginx/access.log

maxretry = 6
Now, we need to define the filter for the jail we just created. Fail2ban stores these within
/etc/fail2ban/filter.d/ . So, for our example we will create the nginx-noscript.conf file within this

directory. Its important that the name we choose here corresponds with what we named our jail in

jail.local .

New definition for /etc/fail2ban/filter.d/nginx-noscript.conf jail

[Definition]
failregex = ~<HOST> - *GET.*(\.php|\.asp|\.exe|\.pl|\.cgi|\.scgi)

ignoreregex =

If you want to test this regex, you can use fail2ban-regex to do so on any log file. The command
below is an example of testing a regex statement on an nginx log. This command will output all the
matching lines within the log that are captured by the regex, which would result in a ban from
fail2ban -

sudo fail2ban-regex /var/log/nginx/access.log '~ <HOST>.*\"(.|)\\x.*\"$' --print-all-matched

Jail Status

To check on the status of running jails, see the command below

sudo fail2ban-client status

When users are banned under a jail, you can see a list of them by running the following, where
nginx-http-auth can be changed out for any name of a running jail.

sudo fail2ban-client status nginx-http-auth

To unban an IP from a jail, run the below

sudo fail2ban-client set nginx-http-auth unbanip 124.45.123.777.

To unban all IPs from a given jail

sudo fail2ban-client restart --unban nginx-http-auth

Log Files

Fail2ban's logs will look similar to the below -

sudo cat /var/log/fail2ban.log | tail

2019-11-24 17:16:24,307 fail2ban.filter [27297]: INFO [nginx-noscript] Found 62.234.108.37 - 2019-11-24
17:16:24

2019-11-24 17:16:25,009 fail2ban.filter [27297]: INFO [nginx-noscript] Found 62.234.108.37 - 2019-11-24
17:16:24

2019-11-24 17:16:25,425 fail2ban.filter [27297]: INFO [nginx-noscript] Found 62.234.108.37 - 2019-11-24
17:16:25

2019-11-24 17:16:25,481 fail2ban.actions [27297]: NOTICE [nginx-noscript] Ban 62.234.108.37 - 2019-11-
24 17:17:25

Fail2ban keeps these logs within the /var/log/fail2ban.log file, we can use these logs with the
commands below to create useful reports for hardening your server or tuning your rules. Take
notice of the difference in the use of zgrep and grep below, where we are either searching recent
logs or all the logs stored on the system.

Report on all logs for summary of bans triggered sorted by jail, grouped by dates -
sudo zgrep -h "Ban " /var/log/fail2ban.log* | awk '{print $6,$1}" | sort | uniq -c

3 [nginx-noscript] 2019-10-27

4 [nginx-noscript] 2019-10-28

4 [nginx-noscript] 2019-10-29

6 [nginx-jail2] 2019-10-27

1 [nginx-jail2] 2019-10-28

2 [nginx-jail2] 2019-10-29

Log report for bans triggered today only, grouped by IP and hostname -
grep "Ban " /var/log/fail2ban.log | grep "date +%Y-%m-%d" | awk '{print $NF}' | sort | awk '{print $1,"("$1")"}" |
logresolve | uniq -c | sort -n

1217.147.85.78 (217.147.85.78)

1 61-219-11-153.HINET-IP.hinet.net (61.219.11.153)

1 85.93.20.70 (85.93.20.70)

1 ip50.ip-51-83-234.eu (51.83.234.50)

1 vmil85089.contaboserver.net (5.189.189.207)

1 vmi214529.contaboserver.net (213.136.87.57)

2 62.234.108.37 (62.234.108.37)

Log report for bans triggered today only, grouped by IP and jail -
sudo grep "Ban " /var/log/fail2ban.log | awk '{print $6,$8}' | sort | uniq -c | sort -n
1 [nginx-jaill] 61.219.11.153

1 [nginx-jaill] 85.93.20.70

1 [nginx-jail2] 138.68.247.104

1 [nginx-jail2] 213.136.87.57

1 [nginx-jail2] 217.147.85.78

1 [nginx-jail2] 5.189.189.207

1 [nginx-noscript] 51.83.234.50
2 [nginx-noscript] 62.234.108.37
5 [nginx-noscript] 51.83.234.50
4 [nginx-noscript] 62.234.108.37

Log report for all bans triggered within a logfile, sorted by date, grouped by jail
sudo grep "Ban " /var/log/fail2ban.log.1 | awk '{print $1, $6}'|sort | uniq -c
1 2020-02-17 [nginx-noscript]
3 2020-02-18 [nginx-noscript]
1 2020-02-18 [nginx-wplogin]
158 2020-02-19 [nginx-noscan]
2 2020-02-19 [nginx-noscript]
15 2020-02-19 [sshd-badproto]
Since nginx-noscan is a permanent ban, the high number above is the jail restoring bans after a manual

reboot on the 19th

Report on all logs for summary of bans triggered, grouped by IP and jail -
sudo awk '($(NF-1) = /Ban/){print $NF,"("$NF")"}' /var/log/fail2ban.log* | sort | logresolve | uniq -c | sort -n
1 mail.grayson-college.info (162.253.219.14)
1 new.wigroup.com.br (159.89.144.7)
1 srvcpanel02.ativy.com (201.7.210.50)
1 vps-0Ol.naftalie.net (142.44.240.254)
2 106.12.54.100 (106.12.54.100)
2 106.13.228.250 (106.13.228.250)
2 111.20.55.66 (111.20.55.66)

Log report for bans triggered today only, grouped and sorted by IP -
sudo awk '($(NF-1) = /Ban/){print $NF}' /var/log/fail2ban.log | sort | uniq -c | sort -n
1131.108.164.19
1138.68.247.104
1213.136.87.57
1217.147.85.78
15.189.189.207
151.83.234.50
161.219.11.153

185.93.20.70
2 62.234.108.37

Report on all logs for summary of bans triggered, grouped and sorted by IP -
sudo awk '($(NF-1) = /Ban/){print $NF,"("$NF")"}' /var/log/fail2ban.log* | sort | logresolve | uniq -c | sort -n
2 79.143.186.114
379.143.187.243
2 79.143.188.161
2 80.211.6.136
2 80.211.85.67
2 80.241.220.101
2 80.241.221.67
380.82.70.118
1 85.93.20.70
2 87.98.136.163
3 89.208.209.125
2 89.238.186.229
291.121.106.6
291.121.157.178
391.121.70.155
391.121.76.97
291.123.204.139
3 91.194.90.159
194.180.250.158

Report on all logs for summary of bans triggered, grouped and sorted by truncated IPs -
zgrep -h "Ban " /var/log/fail2ban.log* | awk '{print $NF}' | awk -F\. '{print $1"."$2"."}' | sort | uniq -c | sort -n |
tail

1101.200.

1 103.60.

1103.98.

1106.120.

1106.13.

1106.54.

1107.6.

1114.115.

1114.215.

1122.51.

1123.207.

1129.146.

Output reduced

8 46.101.
10 91.121.
11 159.65.
11 79.143.
12 51.68.
13 51.38.
19 207.180.
22 173.212.
22 5.189.
33 173.249.

Report on all logs for summary of bans triggered, grouped and sorted by truncated IPs -
Pipe through tail to create a smaller report of most offensive subnets
zgrep -h "Ban " /var/log/fail2ban.log* | awk '{print $NF}' | awk -F\. '{print $1"."$2"."}"' | sort | uniq -c | sort -n |
tail

8 46.101.

10 91.121.

11 159.65.

11 79.143.

12 51.68.

13 51.38.

19 207.180.

22 173.212.

22 5.189.

33 173.249.

€4 Art of the web

Revision #11
Created 14 April 2019 03:10:22 by Shaun Reed
Updated 22 July 2021 13:59:30 by Shaun Reed

https://www.the-art-of-web.com/system/fail2ban-log/

