
Jekyll can be installed by following the Installation Instructions hosted on the official website. So if
you are on Ubuntu Linux,

After running the above to install Jekyll, we just need to pick a project or theme to start our Jekyll
server with. Check out GitHub or Google for some Jekyll themes, and clone one. Keep in mind to
store this repository into a location on your host where you'd like to store the root of your blog,
since we will use this repository to start our Jekyll server it will store all of our configuration files.

Running jekyll build --watch on an active shell will check for any changes to the sites root directory
and build them out to the published site.

When creating a new post, bundle exec jekyll post "Name" can be ran to create a draft post. The same
command has various other uses that will help in the early stages of a blog -

Jekyll

sudo apt-get install ruby-full build-essential zlib1g-dev
echo '# Install Ruby Gems to ~/gems' >> ~/.bashrc
echo 'export GEM_HOME="$HOME/gems"' >> ~/.bashrc
echo 'export PATH="$HOME/gems/bin:$PATH"' >> ~/.bashrc
source ~/.bashrc
gem install jekyll bundler

git clone https://github.com/streetturtle/jekyll-clean-dark
cd jekyll-clean-dark

Build the site with the contents in the current directory
jekyll build

Serve the site on a webserver and detach the process from this shell
jekyll serve --detach

Subcommands:
 docs
 import
 build, b Build your site
 clean Clean the site (removes site output and metadata file) without building.
 doctor, hyde Search site and print specific deprecation warnings

https://jekyllrb.com/docs/installation/

Specifically, page, (un)publish, post, draft, serve, new, and build are the commands we will use
heavily.

When generating a new post using bundle exec jekyll post "Name" , you might notice at the top of the
new post generated in ./_posts/ there is a block describing the page to Jekyll. This is an important
block and can be used to customize how the page is displayed based on the arguments provided.
For example, below is a default new post testpost

The above block does nothing but describe our page to Jekyll, up to our first header that is actually
output to our post # Test . The layout is described in a corresponding file stored in the ./_layouts/
directory.

If we wanted to add a custom table of contents, for example, when running github.com/allejo/jekyll-
toc Jekyll theme we can simply add an argument to our header and it will create a table of contents
with anchored links to each topic header automatically, just by adding toc: true below.

You can also customize it by styling .toc class in **theme.scss**

 help Show the help message, optionally for a given subcommand.
 new Creates a new Jekyll site scaffold in PATH
 new-theme Creates a new Jekyll theme scaffold
 serve, server, s Serve your site locally
 draft Creates a new draft post with the given NAME
 post Creates a new post with the given NAME
 publish Moves a draft into the _posts directory and sets the date
 unpublish Moves a post back into the _drafts directory
 page Creates a new page with the given NAME

layout: post
title: testpost
date: 2019-09-01 12:00
description: A test page
tags:
- test

Test

layout: post
title: testpost
date: 2019-09-01 12:00
description: A test page

https://github.com/allejo/jekyll-toc
https://github.com/allejo/jekyll-toc

Now if we use markdown carefully Jekyll will automatically create a nice table of content based on
the content of our post, and the structure / sizes of the headers for each topic within. (The above
solution is based on github.com/allejo/jekyll-toc)

To display raw code, we'll need to use some Liquid syntax -

Here, we should also be sure to define the langue for syntax highlighting with {% highlight md %}

When trying out new themes, some images or symbols may not work correctly. In chasing these
down, we will need to use a bit of HTML, CSS, Liquid, and Mardown. For example, I noticed a
symbol or image that was used for bullet points in a list of tags was broken on my specific theme,
appearing as an empty box instead. To track this down, tree -L 2 was useful in learning the layout
of this unfamiliar project quickly. Eventually, through viewing the files related to tags within my
theme, I found that the sidebar itself was an include in the below statement of ./_layouts/post.html -

So, this pointed me to check out the ./_includes/ directory, where I found the below file -
./_includes/sidebar.html

tags:
- test
toc: true

{% highlight md %}
{% raw %}
code
{% endraw %}
{% endhighlight %}

<div class="col-md-3 hidden-xs">
 {% include sidebar.html %}
</div>

<div class="sidebar ">
 <h2>Recent Posts</h2>

 {% for post in site.posts limit:5 %}
 {{ post.title }}
 {% endfor %}

</div>

https://github.com/allejo/jekyll-toc

The file above pointed me to the CSS classes below associated with each of the tags () shown
by the sidebar

I knew these would be stored in the ./assets/ directory within the root of our Jekyll project, where I
found ./assets/css/themes.scss contained the below CSS statement content: '\f02b'; - This was the
symbol in the sidebar of my theme that was causing issues

<div class="sidebar">
 <h2>Tags</h2>
 <ul class="sideBarTags">
 {% assign tags = (site.tags | sort:0) %}
 {% for tag in tags %}

 <a href="{{ '/tag/' | append: tag[0] | relative_url }}" data-toggle="tooltip" data-placement="right" title="{{
tag[1].size }}">
 {{tag[0] }}
 {% endfor %}

</div>

<div class="sidebar">
 <h2>Tags</h2>
 <ul class="sideBarTags">

//**
// Sidebar
//**
.sidebar li {
 margin-top: .7em;
 line-height: 1em;
}
ul.sideBarTags {
 list-style: none;
 li:before {
 content: '\f02b';
 font-family: 'FontAwesome';
 float: left;
 margin-left: -0.8em;
 }
}

By changing it, and also tweaking some other settings below, I was able to improve the look of the
sidebar.

//**
// Sidebar
//**
.sidebar li {
 margin-top: .7em;
 line-height: 1em;
}
ul.sideBarTags {
 list-style: none;
 li:before {
 content: '-';
 font-family: 'FontAwesome';
 float: left;
 margin-left: -0.8em;
 }
}

Revision #2
Created 1 September 2019 06:21:22 by Shaun Reed
Updated 4 June 2020 16:13:08 by Shaun Reed

